Class 23
 Distributions in OT

4/11/2022

Important point about Optimality Theory

- A language has a single ranking of constraints that never changes.
- To analyze a language, you need to find one ranking of constraints that simultaneously generates all of the different patterns/processes the language has.

1 Review: Constraints and their definitions

- We now know there are two different categories of constraints: Markedness and Faithfulness constraints.
- The faithfulness constraints are a relatively small set:
(1) Max: Don't delete.
(2) Dep: Don't epenthesize.
(3) Ident[F]: Don't change the value of feature F.
\rightarrow There is a different Ident constraint for every feature: Ident[voice], Ident[nasal], Ident[place], etc.
- The set of Markedness constraints is much larger.
* It is a goal of analysis to figure out how to define the Markedness constraint that is relevant to the process/distribution you are looking at.
- Syllable structure constraints are Markedness constraints:
(4) Sonority Sequencing Principle (SSP): Assign one violation to a candidate for:
a. Each complex onset that it has that does not have rising sonority, and
b. Each complex coda that it has that does not have falling sonority.
(5) NoCoda: Assign one violation to a candidate for each coda that it has.
(6) NoComplexOnset: Assign one violation to a candidate for each complex onset that it has.
(7) NoComplexCoda: Assign one violation to a candidate for each complex coda that it has.
(8) Onset: Assign one violation to a candidate for each syllable that it has that doesn't have an onset.
- We've also encountered some Markedness constraints that don't have anything to do with syllable structure:
(9) NoFinalVoicedObs (*[+voice,-son] $\#$)

Assign one violation to a candidate if it has a voiced obstruent in final position.
(10) AGRee[voice] (*[- α voice,--son][α voice,--son])

Assign one violation to a candidate for each sequence of adjacent obstruents it has that have different values for [\pm voice].
(11) NoGeminate (${ }^{*} \mathrm{C}_{\alpha} \mathrm{C}_{\alpha}$)

Assign one violation to a candidate for each sequence of adjacent consonants which are identical in all features.

2 Some notes on analysis in OT

- Every phonological process results from ranking the relevant Markedness constraint over the relevant Faithfulness constraint.
- When multiple different changes could have fixed the Markedness problem, the Faithfulness constraint that penalizes the actual change ranks below the Faithfulness constraints penalizing those other changes.
- In order for an analysis to be correct, each losing candidate must have a violation of a constraint that ranks higher than the constraint(s) violated by the winning candidate.

3 Distributions in OT

- We've talked a lot of about complementary distribution vs. contrastive distribution.
- In OT, it becomes easier to understand how these concepts fit into the bigger picture.
- In reality, there are four kinds of distributions, relating to whether and where a language makes a contrast between sounds/features.
\rightarrow These four distributions follow from the four different kinds of rankings you can have of three different kinds of constraints:
(12) Three different kinds of constraints
a. Faithfulness constraints
e.g. Ident[voice]
b. Context-free Markedness constraints
e.g. NoVoicedObs (*[+voice, - son $]$)
c. Context-sensitive Markedness constraints
e.g. NoIntervocalicVoicelessObs (*V[-voice,-son]V)
- While there are 6 possible ranking permutations, there are only four different effective distributions that these can result in. We're going to figure out what those are.
\star The following four schematic languages represent the four possible distributions, according to the constraints above.
\rightarrow Describe what is going on in each of the languages.
\rightarrow Construct a ranking of the three constraints above that will produce that language.

Language 1

Word-final	Intervocalic
$/$ pat $/ \rightarrow[$ pat $]$	$/$ pat-o $/ \rightarrow[$ pato $]$
$/$ pad $/ \rightarrow[$ pad $]$	$/$ pad-o $/ \rightarrow[$ pado $]$

Language 2

Word-final	Intervocalic
$/$ pat $/ \rightarrow[\mathrm{pat}]$	$/$ pat-o $/ \rightarrow[$ pado $]$
$/ \mathrm{pad} / \rightarrow[\mathrm{pad}]$	$/$ pad-o $/ \rightarrow[$ pado $]$

Language 3

Word-final	Intervocalic
$/$ pat $/ \rightarrow[$ pat $]$	$/$ pat-o $/ \rightarrow[$ pado $]$
$/$ pad $/ \rightarrow[$ pat $]$	$/$ pad-o $/ \rightarrow[$ pado $]$

Language 4

Word-final	Intervocalic
$/$ pat $/ \rightarrow[$ pat $]$	$/$ pat-o $/ \rightarrow[$ pato $]$
$/$ pad $/ \rightarrow[$ pat $]$	$/$ pad-o $/ \rightarrow[$ pato $]$

