Class 1
 Introduction to Allomorphy

9/28/23

1 Types of Allomorphy

> Allomorphy:
> One "morpheme" (\approx same morphosyntactic/morphosemantic feature (bundle)) surfaces with different phonological content (morph) in different contexts; i.e. one morpheme has multiple allomorphs.

* Many different phenomena fall under the broad umbrella of "allomorphy", running the gamut from purely phonological to purely morphological/lexical.
- Carstairs (1988) lays out four main logically possible types. (All types exist.)
(1) Logically possible types of allomorphy (Carstairs 1988:113)
[order different here]
a. Morphs phonetically similar, distribution describable in purely phonological terms.
b. Morphs phonetically dissimilar, distribution describable in purely phonological terms.
c. Morphs phonetically similar, distribution not describable in purely phonological terms.
d. Morphs phonetically dissimilar, distribution not describable in purely phonological terms.
(2)

	Phonetically similar?			
		Yes	No	
Phonologically predictable?	Yes	(1a)	(1b)	
	No	(1c)	(1d)	

- Type (1a) is clearly all about phonology.
\hookrightarrow We'll talk about that a little today, but not much beyond that.
- This is just straightforward phonology (generally).
- Type (1d) clearly has nothing to do with phonology.
\hookrightarrow What do they have to do with? Morphosyntax and lexical factors - we'll talk about that in a few weeks.
* Type (1b) and (slightly less so) Type (1c) are the cases that will help us understand the phonologymorphology/morphosyntax interface (see esp. Paster 2009, 2015, Nevins 2011), because it is clear that both phonological and morphological factors are at play simultaneously.
\Rightarrow This will be the main topic this week and next week.

1.1 Purely phonological "allomorphy" (Type (1a))

- Different allomorphs can arise because of the application of general phonological processes.
- Sometimes referred to as "phonologically driven allomorphy".
- For example: regular allomorphs of /-z/ and /-d/ suffixes in English.
(3) Plural s in English

- English doesn't allow strings of sibilants (1.) or obstruent clusters that disagree in voice (2.).
- So, the different allomorphs can be explained fully by the phonological context, by invoking general phonological properties of the language.
\rightarrow No special morphological devices are required in order to explain the distribution, and parsimony suggests they should not be employed here.
- To confirm that we can do everything in the phonology using a single UR, here's a quick OT analysis:
(4) Regular plural allomorphy in English is phonological
a. Sibilant-final stems $\rightarrow[-\mathrm{zz}]$

/pæs-z/		*[+strid $][+$ strid $]$	AGREE[voice]	DepV-IO	IDENT[voice]-IO
a.	pæsz	*!	*!		
b.	pæss	*!	,		*
c. ${ }^{\text {P } 8_{8}}$	pæSIZ		,	*	
d.	pæsIS		,	*	*!

b. Voiceless-final stems $\rightarrow[-\mathrm{s}]$

/kæt-z/		*[+strid][+ strid]	Agree[voice]	DepV-IO	Ident[voice]-IO
a.	kætz		*!		
b.	kæts				*
c.	kætı			*!	
d.	kætis			*!	*

c. Other stems $\rightarrow[-\mathrm{z}]$

/dog-z/	*[+strid][+strid]	Agree[voice]	DepV-IO	Ident[voice]-IO
a. dogz				
b. dogs		*!		*
c. dogiz			*!	
d. dogis			*!	*

(5) Ranking summary (Hasse diagram)

1.2 Morphological allomorphy (Types (1d) and (1c))

- Sometimes, different allomorphs look (totally/mostly) unrelated phonologically (i.e. cannot be derived from same or similar UR via anything resembling regular phonology) and are distributed arbitrarily (from a phonological perspective) across particular morphosyntactic/morphosemantic contexts.
- Usually referred to as suppletion.
\rightarrow If phonology has nothing to do with it, these cases must reside (somehow) in the morphology.
- For example: irregular verbal allomorphy in English.
(6) Present \sim Past suppletion in English
a. go [gov] ~ went $[$ wen $(-) t] \quad$ (totally phonologically unrelated)
b. bring $[\mathrm{brm}] \sim$ brought $[\mathrm{br} \partial(-) \mathrm{t}]$, stand $[$ stænd $] \sim$ stood $[\operatorname{stvd}] \quad$ (partially phonologically related)
c. take [terk] ~took [tvk], drive [draiv] ~ drove [drovv], lead [lid] ~ led [lعd], etc.
(clearly phonologically related by semi-regular "ablaut", but not by regular phonology) [also irregular plurals: e.g. mouse \sim mice, foot \sim feet, goose \sim geese, etc.]
- The distribution of go vs. went must be located purely in the morphology/lexicon:
- There are no phonological rules (no matter how ad hoc) which can relate the two allomorphs.
- Furthermore, the distribution appears to be conditioned by the morphosyntax:
(7) a. go / _PRES [really the elsewhere context; appears in infinitive, etc.] b. went / __PAST
- The same probably goes for pairs like bring \sim brought, stand \sim stood.
- Even though the respective allomorphs clearly share some phonological material, the ways in which they differ don't look remotely like regular phonology.
- Cases like $\{$ take \sim took, drive \sim drove, lead \sim led, etc. $\}$ are closer to the borderline (basically Type (1c)).
- They differ only in the vowel, sometimes by just one or two features.
- There are substantial classes of verbs that all pattern in similar ways (cf., e.g., Pinker \& Prince 1988, Albright \& Hayes 2003).
\rightarrow The point is: it looks like phonological generalizations could be involved, so maybe it's not purely morphological/lexical.

1.3 Phonologically Conditioned (Suppletive) Allomorphy (Type (1b))

- The types of cases which are likely to be most enlightening are what is sometimes called "Phonologically Conditioned (Suppletive) Allomorphy" (PCSA; Carstairs 1988, Paster 2009, 2015):
\rightarrow Two (or more) allomorphs which are not transparently phonologically related, but whose distribution is clearly phonologically governed.
- Classic example: English indefinite article $a \sim a n$
(8) English indefinite article

- The distribution seems to be structured so as to avoid hiatus: the consonant-final allomorph (an) appears just in case the vowel-final allomorph would have created a hiatus.
- Historically, it's actually the reverse: the /n/ is original, and was deleted pre-consonantally (basically to avoid a coda).
- All the same points would hold thinking of it in this way synchronically as well.
- However, we can't simply view this as a phonological repair for hiatus:
- English does not use n as an epenthetic consonant
- English generally tolerates hiatus; English allows n in coda
\rightarrow The fact that this morpheme employs a strategy to avoid hiatus is a property of this morpheme, not of the language generally.
- (Though it looks like it operates in the cross-linguistically expected direction - the allomorphs are distributed so as to avoid a marked structure.)
* This effect could alternatively be analyzed as some sort of derived environment effect, or with a special cophonology. However, other examples of PCSA, where the morphs are fully phonetically distinct, can't.
- Carstairs (1988:114-115) mentions a number of such examples (see also Paster 2009, 2015, Nevins 2011).
\hookrightarrow One set comes from noun class markers in Bantu (Guthrie 1956), where phonologically distinct morphs surface in phonologically complementary distribution.

1.3.1 PCSA in Bantu noun class markers

- In Fay, one class has a simple V (_C) vs. C (_V) distinction.
- Any other distribution would result in phonotactic issues - either an initial cluster or hiatus.
(9) Faŋ Class 5: $a \sim d z$ (Guthrie 1956:551)
a. Consonant-initial stems have [a-]: a-fan $(* d z-f a n)$ 'forest'
b. Vowel-initial stems have [dz-]: $d z$-al (*a-al) 'village'
- In one noun class in Tsogə, consonant-initial and front-vowel-initial stems pattern together (showing a default, presumably) against back-vowel-initial roots.
- We can probably understand this as a restriction on adjacent vowels mismatching in backness.
(10) Tsogə Class 7: ge~s (Guthrie 1956:551)
a. Consonant-initial stems have [gẹ-]: ge-deku 'chin'
b. Front-vowel-initial stems also have [ge-]: ge-epa 'bone', ge- edur 'chin'[?]
c. Back-vowel-initial stems have [s-]: s-oma 'thing', s-ətə 'fire'
- In Kongo, a number of noun classes show no overt marker with stems beginning in a non-nasal consonant, but a consistent overt marker for other stems (i.e. vowel-initial and nasal-initial).
- Not completely clear what problem this distribution would be solving... (maybe no word-initial [+syllabic] segments? but the non-null allomorph would get you that too.)
(11) Kongo (Guthrie 1956:551-552)
a. Class 5: $\emptyset \sim d i$
i. Non-nasal-consonant-initial stems [Ø-]: (Ø-)pata 'village'
ii. Vowel-initial stems have [di-]: di-aku 'egg'
iii. Nasal-initial stems have [di-]: di-nkondo 'banana'
b. Class 7: $\emptyset \sim k i$
i. Non-nasal-consonant-initial stems [Ø-]: (- $)$ sanu 'comb'
ii. Vowel-initial stems have [ki-]: ki-ula 'frog'
iii. Nasal-initial stems have [ki-]: ki-nzu 'pot'
c. Class 8 (plural of Class 7?): $\emptyset \sim b i$
i. Non-nasal-consonant-initial stems [Ø-]: (Ø-) sanu 'combs'
ii. Vowel-initial stems have [bi-]: bi-ula 'frogs'
iii. Nasal-initial stems have [bi-]: $b i-n z u$ 'pots'
d. Class 14: $\emptyset \sim u / w \quad[u \sim w$ allomorphy is phonologically-driven $]$
i. Non-nasal-consonant-initial stems [Ø-]: (Ø-)fuku 'night'
ii. Vowel-initial stems have [w-]: w-anda 'net'
iii. Nasal-initial stems have [u-]: u-mfumu 'chieftainship'
- In circumstances like these, it seems clear that there must be at least two URs available (under some conditions) for each particular morpheme.
- i.e., no phonological transformation(s) could derive both morphs from a single UR.
- Yet it is phonological information which is conditioning the distribution of the two morphs.

1.4 Big Questions

- Along the lines of Nevins (2011:esp. §3), some of the most significant questions are:
* Which aspects of "allomorphy" reside in the phonology vs. the morphology?
\hookrightarrow How do we decide for any given case?
\star What exactly do the mechanisms of non-purely-phonological allomorphy look like?
\hookrightarrow What is the proper input to the phonological evaluation?

2 Vocabulary Insertion in Distributed Morphology

- For purely morphological allomorphy, it is (more or less) clear that this must take place in the morphological component, because phonological information plays no role in determining the choice.
\star There are ways of sticking this into the phonological component nonetheless, if we allow the phonological component to see substantial morphological information (see below).
- Consider suppletion in English be:
(12) Person/number suppletion in English be

	Present		Past	
	Singular	Plural	Singular	Plural
1st	$a m$ [æm]	are [ax]	was [$\mathrm{w} \wedge \mathrm{z}$]	were [w_{1}]
2nd	are [ax]	are [ax]	were [w_{1}]	were [wx]
3 rd	is [Iz]	are [ax]	was [$\mathrm{w} \wedge \mathrm{z}$]	were [w_{1}]

- Within the present and past tense paradigms, there are 5 distinct morphs: am, is, are, was, were
- There are some phonological similarities between some forms (esp. was~were), but it seems unlikely that any of these could be related by (synchronic) phonological transformations.
- Rather, it seems like it's purely morphosyntactic information which is making the determination.
\star They are undoubtedly related by a diachronic phonological transformation:

$$
\begin{align*}
& \text { a. } *_{s}>*_{z}>r / \mathrm{V} _\mathrm{V}(\text { Verner's Law }) \tag{13}\\
& \text { b. } *_{s}>z / ?
\end{align*}
$$

*[wæs-ón] >> [wər]
*[wǽs-e] >> [w wz$]$

- Distributed Morphology (DM; Halle \& Marantz 1993, et seq.) uses a system of "Vocabulary Insertion" (VI) to relate morphosyntactic information to stored lexical items (Vocabulary Entries) which contain arbitrary phonological information (i.e. URs).
(14) Components of VI in DM
a. List of Vocabulary Entries (\approx lexicon)
b. Set of (intrinsically-ordered) Vocabulary Insertion rules, which relate morphosyntactic (or morphosemantic, in the case of roots) information to particular Vocabulary Entries
c. For a particular derivation, the Vocabulary Entries which are selected by applying the VI rules are sent to the phonological component, where they function as the URs/Input to the phonological evaluation
- VI rules can contain contextual information (much like phonological rules, as it were).
\rightarrow For cases like English be allomorphy, the context is fairly clearly morphosyntactic in nature.
(15) VI rules for English be
a. $\quad \mathrm{BE} \Leftrightarrow / æ \mathrm{~m} / \quad / \quad \mathrm{PRES}, 1, \mathrm{SG}$
b. $\quad \mathrm{BE} \Leftrightarrow / \mathrm{I}(\mathrm{z}) / \quad / \quad$ PRES, 3, SG ([z] could be the 3sG.Pres agreement marker)
c. $\mathrm{BE} \Leftrightarrow / \mathrm{aI} / \quad / \quad \mathrm{PRES}$
d. $\quad \mathrm{BE} \Leftrightarrow / \mathrm{w} \Lambda \mathrm{Z} /$ / PAST, $1, \mathrm{SG}$
e. $\quad \mathrm{BE} \Leftrightarrow / \mathrm{w} \Lambda \mathrm{Z} /$ / PAST, 3 , SG
f. $\mathrm{BE} \Leftrightarrow / \mathrm{wI} / \quad / \mathrm{PAST}$
- The rules with person specifications are intrinsically ordered before those without via the "Elsewhere Condition", which states that more specific rules are ordered before less specific ones.
\star The question of interest today is: can the context also include phonological information?
- If so, how, and is that a good idea?
\rightarrow Standard answer in DM: yes, but only if the context is contained in a morpheme which has already been spelled-out - i.e. is lower in the tree, assuming bottom-up cyclic spell-out (see, e.g., Bobaljik 2000, 2012).
- We'll delve into this more over the next couple weeks.

3 VI with phonological contexts, and Sub-categorization

- For cases of PCSA, we could extend a morphologically-oriented DM VI type analysis to phonological information.
- Consider genitive allomorphy in Dja:bugay (Pama-Nyungan) (Paster 2015:219-223; from Patz 1991):
- With vowel-final stems, the genitive suffix surfaces as [-n]
- With consonant-final stems, the genitive suffix surfaces as [-yun]
* Assume that $-\eta$ un cannot be related to $-n$ in any phonologically regular way.
(16) Genitive allomorphy in Dja:bugay
a. Vowel-final stems $\rightarrow[-\mathrm{n}]$

guludu-n	(*guludu-yun)	'dove-GEN'
gurra:-n	(*gurra:-yun)	'dog-GEN'
djama-n	(*djama-yun)	'snake-GEN'

b. Consonant-final stems \rightarrow [-yun]

girrgirr-yun ganal-yun bibuy-yun	$\left({ }^{*}\right.$ girrgirr-n $)$	'bush canary-GEN'
$\left({ }^{*}\right.$ bibul-n $)$	'goanna-GEN' $)$	'child-GEN'

- We can describe this distribution using VI rules in the morphological component of the grammar where the context is comprised of phonological information.
(17) VI rules for Dja :bugay genitive
a. GEN $\Leftrightarrow[-y u n] /[\text { stem } \ldots C]_{\ldots}$
b. GEN $\Leftrightarrow[-\mathrm{n}] \quad$ (elsewhere)
- However, as Nevins (2011:esp. 14-16) points out for similar examples, this approach seems to be missing a crucial phonological generalization:
- The [-yun] allomorph seems to be used in order to avoid a complex coda (word-final CC cluster).
a. /ganal + GEN $/ \rightarrow$ *ganal-n (violates $* \mathrm{CC} \#$) \rightarrow ganal-yun
b. /guludu + GEN $/ \rightarrow$ guludu-n (satisfies $* \mathrm{CC} \#$) \nrightarrow *guludu-ņun
- Nevins (2011:22) outlines a way to integrate the phonological explanation into a morphological insertion account: mention constraint violation/satisfaction in the phonological context.
(19) VI rules for Dja:bugay genitive (revised)
a. GEN $\Leftrightarrow[-\mathrm{yun}]$ if it removes/avoids a ${ }^{*} C C \#$ violation
b. GEN $\Leftrightarrow[-\mathrm{n}] \quad$ (elsewhere)
\rightarrow This, though, would seem to require a sort of comparison/look-ahead which is odd in (standard) DM.
- In order to know to use the more specific allomorph, you need to first know that the default allomorph would yield a violation.
- Yet the intrinsic ordering inherent to VI seems to suggest that you discharge the earlier rule without reference to the later rule.

3.1 Sub-categorization

- Paster $(2006,2009,2015)$ advocates for a "sub-categorization" approach to these sorts of facts.
- It falls broadly within the Sign-Based Morphology / Construction Grammar approach developed by Sharon Inkelas and other Berkeley/Stanford people.
- See also Yu (2007) on using this approach for infixation.
- In this approach, each allomorph is assigned its own sub-categorization frame.
- This sub-categorization frame may include phonological restrictions about which types of stems the allomorph can attach to.
- It may also specify its own "cophonology", i.e. morpheme-specific phonological grammar (see, e.g., Inkelas \& Zoll 2007).
- This sub-categorization frame is also where (morpho)syntactic and semantic conditions on affixation live.
- If we adopt Nevins's suggestion about what sort of phonological information can be contained in the context of VI rules, then two approaches become very similar, so I'm not going to go into it further today.

4 Allomorph selection in the phonology: the question of optimization

- In most cases, we can do these same things (and maybe better) in the phonological component itself.
- Several specific proposals exist, but they mostly have the property of allowing multiple morphs to co-exist in the input to the phonological component, and allowing morphologically-oriented constraints to adjudicate between them in the phonological component.
- The upshot of this is that standard phonological constraints are employed to choose between the different morphs in the part of the grammar where they're supposed to be, i.e. in the phonology.
- This general approach is attributed to McCarthy \& Prince's early work in OT (McCarthy \& Prince 1993a,b), and often referred to as the "P[honology] > M[orphology]" approach.
\rightarrow If/when "phonological" constraints outrank morphological "constraints", the phonology can cause the morphology to do things it doesn't want to do.
- e.g. use a dispreferred allomorph, displace morphemes within the word, etc.
- (There usually isn't a clear definition given for what counts as a P constraint and what counts as an M constraint. McCarthy and Prince were super unclear on this in their early work.)

Important Prediction:

- These approaches predict that all phonologically conditioned allomorphy must be phonologically optimizing; i.e. whenever a non-default allomorph surfaces, it must improve the phonological structure in that case relative to the default allomorph.
- This is because the only thing which can divert a derivation away from the default allomorph is high-ranking phonological constraints.
- I'll exemplify this approach with "Use:X" constraints (loosely based on MacBride 2004):
- The phonological input consists of all possible (allo)morphs associated with a given morpheme (i.e. morphosyntactic feature (bundle))
\approx The output of Vocabulary Insertion is a set of morphs.
- Each morph is associated with a UsE constraint, which is ranked in Con.
- Definitionally, Use:Default > Use:Alternative
\rightarrow If a phonological constraint $\mathbb{P} \gg$ Use:Default, and \mathbb{P} is violated by the output form with the default morph, then the alternative morph will be selected.
\star Bonet, Lloret, \& Mascaró (2007) and Mascaró (2007) use a constraint they call "Priority", which does exactly this but with a single constraint. The relevant lesson and mechanics are essentially the same.

4.1 Dja:bugay genitive allomorphy with UsE: X constraints

- We can implement the insights of Dja:bugay genitive allomorphy with this approach (see Kager 1996):

$$
\begin{equation*}
\text { VI rule for the Dja:bugay genitive: GEN } \Leftrightarrow /\{-n,-\mathfrak{y} u n\} / \tag{20}
\end{equation*}
$$

[no context needed]

- We take /-n/ to be the default morph, and /-yun/ to be the alternative morph; therefore:
Ranking: USE:/-n/ > USE:/-yun/
- The default fails to surface just in case it would create a final CC cluster; therefore:

$$
\begin{equation*}
\text { Ranking: }{ }^{*} \mathrm{CC} \# \gg \text { UsE:/-n/ } \tag{22}
\end{equation*}
$$

- These pieces put together derive the full distribution:

Dja:bugay genitive allomorphy with Use: X constraints
a. Vowel-final stems $\rightarrow[-n]$ (default)

/guludu $+\{-\mathrm{n},-\mathrm{y} \text { un }\}_{\mathrm{GEN}} /$	*CC\#	UsE:/-n/	USE:/-ŋ̧un/
a. guludu-n			*
b. guludu-yun		*!	

b. Consonant-final stems \rightarrow [-yun] (alternative, driven by $* \mathrm{CC} \#$)

ganal $+\{-\mathrm{n}, \text {-yun }\}_{\text {GEN }} /$		${ }^{*} \mathrm{CC} \#$	USE:/-n/	UsE:/-ท̆un/
a. ganal-n	$*!$		$*$	
b. ganal-yun		$*$		

- The point is: the (accidental?) existence of an alternative allomorph allows the phonology to solve a phonotactic problem by morphological means rather than purely phonological means.
- Why not solve it by phonological means, e.g. epenthesis? Ranking.
\rightarrow As long as DEPV-IO \gg UsE:/-n/, selecting the alternative allomorph will be less costly than performing epenthesis.
- This holds whether the language otherwise allows final clusters (DEPV-IO \gg *C\#) or otherwise repairs them via epenthesis $(* \mathrm{CC} \# \gg \mathrm{DEPV}-\mathrm{IO})$. I don't know which is true.

Allomorphy not epenthesis

4.2 Is PCSA always optimizing?

- When the selection between different morphs is phonologically optimizing (i.e. improving on some highranked phonological constraint), the $\mathbf{P} \gg \mathbf{M}$ approach works very nicely.
- The problem is, there are at least some cases where it doesn't look optimizing.

4.2.1 Apparently phonologically arbitrary distributions

- There are a number of PCSA patterns where the allomorphs don't seem to serve any different phonological function, including the following from Nevins (2011:15):
(25) Kaititj ergative suffix allomorphy: $[-\eta]$ after bisyllabic stems, $[-1]$ after trisyllabic stems (Paster 2006)

a. aki- \boldsymbol{y}	'head-ERG'	b. aliki-l	'dog-ERG'	
ilt ${ }^{j} \mathrm{i}-\mathrm{y}$	'hand-ERG',	atuji-l	'man-ERG'	
ajnpni-	'pouch-ERG'		ayiki-l	'sun-ERG'

Axininca Campa genitive allomorphy: [-ni] after bimoraic stems, [-ti] elsewhere (Bye 2008)
a. no-jorja-ni 'my manioc worm' b. i-wisiro-ti 'his small toucan' i-çaa-ni 'his anteater' no-jairo-ti 'my termite' a-sari-ni 'our macaw' a-jaarato-ti 'our black bee'

- In both of these cases, you get an alternation in the featural composition of a consonant, but this alternation serves no discernible purpose.
\rightarrow At present, such cases look like they do require arbitrary specification in the morphology.
- However, if some phonological motivation could be conjured up, then we could do without it.
- It seems like most of the apparently arbitrary patterns are "syllable-counting allomorphy", i.e. the distribution of different morphs appears to be governed by the syllable count of the stem.
- I don't think we have a good handle on how these work to begin with...

4.2.2 Apparently(/allegedly) phonologically "perverse" distributions

- Some PCSA distributions seem not only arbitrary, but actually counter to expected phonological patterns - "perverse" in Paster's (2015) terms.
- The banner case is definite suffix allomorphy in Haitian Creole (see Klein 2003, Paster 2015:229, and other references therein).
- Consonant-final stems take -la, but vowel-final stems take $-a$, yielding a hiatus which could have been avoided by using -la.

Haitian Creole definite suffix (data taken from Paster 2015:229)

$\underline{\text { Consonant-final stems } \rightarrow \text { [-la] }}$		$\underline{\text { Vowel-final stems } \rightarrow \text { [-a] }}$	
pitit-la	'the child'	panié-a	'the basket'
ãj-la	'the angel'	trou-a	'the hole'
kay-la	'the house'	figi-a	'the face'
madãm-la	'the lady'	chẽ-a	'the dog'

- If we were to try to use Onset and/or NoCoda as the relevant phonological factor(s), we would actually derive exactly the wrong result; hence "perverse".
(28) Haitian Creole definite suffix allomorphy with syllable structure constraints (doesn't work)
a. Vowel-final stems $\rightarrow[-\mathrm{a}]$

trou $+\{-\mathrm{a},-\mathrm{la}\}_{\text {DEF }} /$		ONSET	NOCODA	USE:/-a/	USE:/-la/
a. $\odot \quad$ trou.-a	$*!$			$*$	
b. 6 trou.-la			$*$		

b. Consonant-final stems \rightarrow [-la]

/pitit+ $\{\text {-a, } \text {-la }\}_{\text {DEF }} /$		ONSET	NoCODA	USE:/-a/	UsE:/-la/
a.	piti.t-a				$*$
b. ©-2 pitit.-la		$*!$	$*$		

\rightarrow Paster $(2009,2015)$ and others thus use this case to argue against the $\mathbf{P} \gg \mathbf{M}$ approach.

* I don't think this is what the pattern's actually about: it's not conditioned by syllable phonotactics, it's (something like) morphophonological alignment (Klein 2003). We'll work through this next time.

4.3 Opacity in allomorph selection

- One of the other main points of contention between the "allomorphy in the morphology" people and the "allomorphy in the phonology" people is the status of opacity in allomorph selection.
- There are a number of patterns where allomorph selection appears to be based on the underlying representation not the ultimate output; for example, Turkish, Japanese, Galician (see, e.g., Nevins 2011:17-18).
- Most of these are cases of allomorphy determined by adjacent C vs. V , where the relevant C is deleted at a "later" point in the derivation.
- Paster uses such cases to argue for selection in the morphology, where only the UR is visible.
- Kalin (2020) makes a very similar argument based on infixation.
- Nevins points out, however, that this could simply be garden-variety opacity.
- Allomorph selection could precede the opacifying phonological process.
- This is doable in phonological frameworks which permit intermediate levels of representation, e.g.
- Lexical Phonology (Kiparsky 1982) / Stratal OT (Kiparsky 2000)
- "Optimal Interleaving" in OT with Candidate Chains (OT-CC) (Wolf 2008, 2015).
\rightarrow Opacity in allomorph selection may be amenable to general approaches to opacity, and thus does not on its own necessarily decide between the different views of allomorphy.
$\hookrightarrow ~ . . . b u t ~ t h e n ~ w e ~ n e e d ~ t o ~ u n d e r s t a n d ~ h o w ~ o p a c i t y ~ i n t e r a c t s ~ w i t h ~ m o r p h o l o g y ~ m o r e ~ g e n e r a l l y . ~$

References

Albright, Adam \& Bruce Hayes. 2003. Rules vs. Analogy in English Past Tenses: A Computational/Experimental Study. Cognition 90(2):119-161.
Bobaljik, Jonathan David. 2000. The Ins and Outs of Contextual Allomorphy. In Kleanthes K. Grohmann \& Caro Struijke (eds.), University of Maryland Working Papers in Linguistics 10, 35-71. College Park, MD: University of Maryland, Department of Linguistics. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.569.5165\&rep=rep1\&type=pdf.
——. 2012. Universals in Comparative Morphology: Suppletion, Superlatives, and the Structure of Words. Cambridge, MA: MIT Press.
Bonet, Eulàlia, Maria-Rosa Lloret \& Joan Mascaró. 2007. Allomorph Selection and Lexical Preferences: Two Case Studies. Lingua 117:903-927.
Bye, Patrik. 2008. Allomorphy: Selection, not Optimization. In Sylvia Blaho, Patrik Bye \& Martin Krämer (eds.), Freedom of Analysis?, 63-92. Berlin \& New York: Mouton de Gruyter.
Carstairs, Andrew. 1988. Some Implications of Phonologically Conditioned Suppletion. In Geert Booij \& Jaap van Marle (eds.), Yearbook of Morphology 1988, 67-94. Dordrecht: Kluwer.
Guthrie, Malcolm. 1956. Observations on Nominal Classes in Bantu Languages. Bulletin of the School of Oriental and African Studies, University of London 18(3):545-555. http://www.jstor.org/stable/610117.
Halle, Morris \& Alec Marantz. 1993. Distributed Morphology and the Pieces of Inflection. In Ken Hale \& Samuel Jay Keyser (eds.), The View from Building 20: Essays in Honor of Sylvain Bromberger, 111-176. Cambridge, MA: MIT Press.
Inkelas, Sharon \& Cheryl Zoll. 2007. Is Grammar Dependence Real? A Comparison Between Cophonological and Indexed Constraint Approaches to Morphologically Conditioned Phonology. Linguistics 45(1):133-171.
Kager, René. 1996. On Affix Allomorphy and Syllable Counting. In Ursula Kleinhenz (ed.), Interfaces in Phonology (Studia Grammatica 41), 155-171. Berlin: Akademie Verlag.
Kalin, Laura. 2020. Infixes Really are (Underlyingly) Prefixes/Suffixes: Evidence from Allomorphy on the Fine Timing of Infixation. Ms., Princeton. https://ling.auf.net/lingbuzz/005581
Kiparsky, Paul. 1982. Lexical Morphology and Phonology. In I.-S. Yang (ed.), Linguistics in the Morning Calm, 3-91. Seoul: Hanshin.
—. 2000. Opacity and Cyclicity. The Linguistic Review 17(2-4):351-367. doi:10.1515/tlir.2000.17.2-4.351.
Klein, Thomas B. 2003. Syllable Structure and Lexical Markedness in Creole Morphophonology: Determiner Allomorphy in Haitian and Elsewhere. In Ingo Plag (ed.), The Phonology and Morphology of Creole Languages, 209-228. Tübingen: Max Niemeyer.
MacBride, Alexander Ian. 2004. A Constraint-Based Approach to Morphology. PhD Dissertation, UCLA.
Mascaró, Joan. 2007. External Allomorphy and Lexical Representation. Linguistic Inquiry 38(4):715-735.
McCarthy, John J. \& Alan Prince. 1993a. Generalized Alignment. In Geert Booij \& Jaap van Marle (eds.), Yearbook of Morphology 1993, 79-153. Kluwer. doi:10.1007/978-94-017-3712-8 4.
. 1993b. Prosodic Morphology I: Constraint Interaction and Satisfaction. Linguistics Department Faculty Publication Series 14 (2001 version). http://scholarworks.umass.edu/linguist faculty pubs/14.
Nevins, Andrew. 2011. Phonologically Conditioned Allomorph Selection. In Marc van Oostendorp, Colin J. Ewen, Elizabeth Hume \& Keren Rice (eds.), The Blackwell Companion to Phonology, vol. IV (Phonological Interfaces), 1-26. John Wiley \& Sons, Ltd. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781444335262.wbctp0099.
Paster, Mary. 2006. Phonological Conditions on Affixation. PhD Dissertation, University of California, Berkeley. http: //escholarship.org/uc/item/7tc6m7jw.pdf
——. 2009. Explaining Phonological Conditions on Affixation: Evidence from Suppletive Allomorphy and Affix Ordering. Word Structure 2(1):18-37
——. 2015. Phonologically Conditioned Suppletive Allomorphy: Cross-Linguistic Results and Theoretical Consequences. In Eulàlia Bonet, Maria-Rosa Lloret \& Joan Mascaró (eds.), Understanding Allomorphy: Perspectives from Optimality Theory, 218-253. UK: Equinox.
Patz, Elisabeth. 1991. Djabugay. In R. M. W. Dixon \& Barry J. Blake (eds.), The Handbook of Australian Languages 4, 245-347. Melbourne: Oxford University Press.
Pinker, Steven \& Alan Prince. 1988. On Language and Connectionism: Analysis of a Parallel Distributed Processing Model of Language Acquisition. Cognition 28(1-2):73-193.
Wolf, Matthew. 2008. Optimal Interleaving: Serial Phonology-Morphology Interaction in a Constraint-Based Model. PhD Dissertation, University of Massachusetts, Amherst.
——. 2015. Lexical Insertion Occurs in the Phonological Component. In Eulàlia Bonet, Maria-Rosa Lloret \& Joan Mascaró (eds.), Understanding Allomorphy: Perspectives from Optimality Theory, 361-407. UK: Equinox.
Yu, Alan C. L. 2007. A Natural History of Infixation. Oxford: Oxford University Press.

