Structure and Base-Derivative Correspondence in Bantu Affix Ordering

 $Sam\ Zukoff,\ UCLA \\ samzukoff@gmail.com\cdot www.samzukoff.com$

Princeton Phonology Forum Princeton University December 2–3, 2022 Introduction

Introduction

000000

The Mirror Principle and Cyclic Concatenation

- (1)The Mirror Principle [MP]: "Morphological derivations must directly reflect syntactic derivations (and vice versa)." (Baker 1985)
- The MP is usually implemented via cyclic morphological concatenation:
- (2)Procedure for cyclic concatenation
 - **Step 1:** Attach the first affix that combines with the root.
 - **Step 2:** Attach the next affix that combines with the root. (repeat)

Introduction

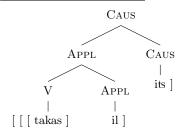
Introduction

000000

Morphological Templates

- One prima facie challenge to the MP and cyclic concatenation is morphological templates:
- (3)Morphological Templates: Morphemes always appear in a particular order, regardless of structure/scope.
- A famous example is the CARP template in Bantu (Hyman & Mchombo 1992:350, Hyman 2003b:247, Good 2005, a.o.).
- CARP template: Causative-Applicative-Reciprocal-Passive (4)

Asymmetric Compositionality Suffix Doubling Opacity Conclusions References


Introduction

Introduction 000000

CARP: Causative and Applicative in Chichewa

• The only way to form a Causativized Applicative (5) in Chichewa (Mchombo 2004) is in accordance with the CARP template (6a).

(5) Causativized Applicative

- (6) a. CARP order ✓ takas-its-il
 - stir-CAUS-APPL-'cause to [stir with]'
 - b. Mirror/Cyclic order X

*takas-il-itsstir-APPL-CAUSintended: 'cause to [stir with]'

(Hyman 2003b:248)

4/56

 \star Patterns like this tell us that cyclic concatenation can't be the whole story.

Sam Zukoff, UCLA Bantu Affix Ordering December 2-3, 2022

Introduction

Introduction

Goals of this talk

000000

- The goal of this talk is to resolve this tension between the Mirror Principle and morphological templates.
- The solution is to allow structure to influence the derivation without employing a literally cyclic model.

Asymmetric Compositionality Suffix Doubling Opacity Conclusions Reference

Introduction

Introduction

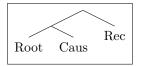
Components of the framework

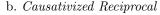
- Order is determined in the phonological component primarily by the interaction between two constraint types:
 - 1. Alignment constraints (McCarthy & Prince 1993), whose ranking is dynamically tied to structure via the "Mirror Alignment Principle" (Zukoff 2022).
 - \hookrightarrow Mirror Principle
 - 2. Bigram morphotactic constraints (Ryan 2010) favoring arbitrary templatic orders.
 - \hookrightarrow Morphological templates
- Further structure-dependent aspects of CARP can be explained using Base-Derivative correspondence/faithfulness (Benua 1997, a.o.).

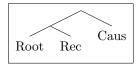
《마》《檀》《토》 (토) · 이익()

Introduction

Roadmap

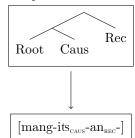

000000

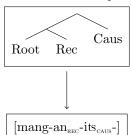

- 1 Introduction
- 2. Asymmetric Compositionality Interpretive asymmetries between CARP forms and non-CARP forms
- 3. Suffix Doubling in Chichewa Restricted suffix doubling and associated asymmetric compositionality
- 4. Overapplication opacity in Nyakyusa Unexpected application of phonology in CARP forms dependent on structure
- 5 Conclusion



Causative and Reciprocal in Chichewa

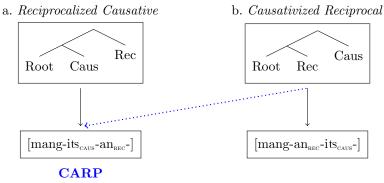
- We'll start by considering forms with Causative and Reciprocal.
- (7) a. Causative \Leftrightarrow /its/
 - b. Reciprocal \Leftrightarrow /an/
 - c. $\sqrt{tie} \Leftrightarrow /\text{mang}/$
- Chichewa allows both structural combinations of these two morphemes, yielding distinct interpretations:
- (8) Permissible structures with Caus and Rec
 - a. Reciprocalized Causative





Asymmetric Compositionality in Chichewa Mirror Orders

- The orders expected via MP / cyclic concatenation are grammatical:
- (9) Cyclic/mirror mappings permissible
 - a. Reciprocalized Causative


b. Causativized Reciprocal

Asymmetric Compositionality in Chichewa CARP Orders

- The Causativized Reciprocal can alternatively have the order [ROOT-CAUS-REC].
 - \rightarrow This violates the Mirror Principle, but obeys the CARP template.

(10) <u>CARP-obeying, Mirror-violating mapping permissible</u>

No Anti-CARP Orders

- The Reciprocalized Causative can't have MP-violating order [ROOT-REC-CAUS].
 - \rightarrow Only CARP can induce MP violations.

(11) No Anti-CARP mappings

a. Reciprocalized Causative

B. Causativized Reciprocal

Root Rec

Root Rec

[mang-its_caus-an_rec-]

[mang-an_rec-its_caus-]

CARP

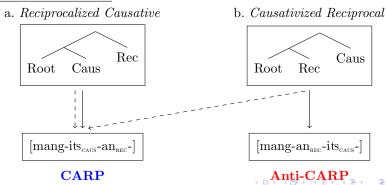
Anti-CARP

4 ロ ト 4 個 ト 4 屋 ト 4 屋 ト 9 Q P

Asymmetric Compositionality

- Hyman (2003b) calls this state of affairs "asymmetric compositionality".
 - Structures whose MP orders violate CARP are linearly ambiguous.
 - Orders that obey CARP are structurally/semantically ambiguous.
 - → Order-structure pairs that violate both CARP and MP are not allowed.

(12)Asymmetric compositionality a. Reciprocalized Causative b. Causativized Reciprocal Rec Caus Caus Root Rec Root $[\text{mang-its}_{\text{\tiny CAUS}} - \text{an}_{\text{\tiny REC}} -]$


CARP

mang-an_{rec}-its_{caus}-|

Anti-CARP

What do we need our theory to do?

- Our theory of morpheme ordering must derive two types of mappings:
- (13) a. MP-obeying mappings, regardless of structure (solid lines) b. CARP-obeying mappings, regardless of structure (dashed lines)
- (14) Required mappings

Proposal

- \star There is no obvious way to do this using cyclic concatenation alone.
- I propose to account for these mappings through the parallel interaction of two types of constraints:
- (15) a. Alignment constraints (McCarthy & Prince 1993)
 - → Responsible for MP orders when coupled with the Mirror Alignment Principle (Zukoff 2022)
 - b. Bigram morphotactic constraints (Ryan 2010)
 - \hookrightarrow Responsible for CARP orders
- The alternations inherent to asymmetric compositionality are derived through variable ranking.

Alignment Constraints

- Alignment constraints (McCarthy & Prince 1993) demand that morpheme edges coincide with word edges.
- (16) ALIGN(RECIPROCAL, R; PWORD, R) [ALIGN-REC-R]
 Assign one violation for each segment intervening between the right edge of the exponent of Reciprocal and the right edge of the word.
- (17) ALIGN(CAUSATIVE, R; PWORD, R) [ALIGN-CAUS-R]
 Assign one violation for each segment intervening between the right edge of the exponent of Causative and the right edge of the word.
- The relative ranking of alignment constraints on individual morphemes can determine relative order.

Deriving Chichewa's Mirror Principle behavior

- The two different orders of Caus and Rec correspond to the two different rankings of the alignment constraints:
- (18) Reciprocalized Causative mang-its-an-

$/\mathrm{mang}_{\mathrm{ROOT}},\mathrm{its}_{\mathrm{CAUS}},\mathrm{an}_{\mathrm{REC}}/$		Alig	N-REC-R	Aligi	N-CAUS-R
a.	mang-its-an- [CR]			**	(an)
b.	mang-an-its- [RC]	*!*	(its)		

(19) Causativized Reciprocal mang-an-its-

/mang _{root} , its _{caus} , an _{rec} /		ALIGN	-Caus-R	Align	-Rec-R
a.	mang-its-an- [CR]	*!*	(an)		
b.	mang-an-its- [RC]			**	(its)

Deriving Chichewa's Mirror Principle behavior

- The two different orders of Caus and Rec correspond to the two different rankings of the alignment constraints:
- (18) Reciprocalized Causative mang-its-an-

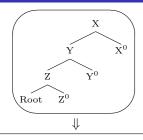
$/\mathrm{mang}_{\mathrm{ROOT}},\mathrm{its}_{\mathrm{CAUS}},\mathrm{an}_{\mathrm{REC}}/$	ALIGN-REC-R	Align-Caus-R
a. s mang-its-an- [CR]		** (an)
b. mang-an-its- [RC]	*!* (its)	

(19) Causativized Reciprocal mang-an-its-

$/\mathrm{mang}_{\mathrm{ROOT}},\mathrm{its}_{\mathrm{CAUS}},\mathrm{an}_{\mathrm{REC}}/$	Align-Caus-R	ALIGN-REC-R
a. mang-its-an- [CR]	*!* (an)	
b. 🕸 mang-an-its- [RC]		** (its)

- \star Alignment ranking directly correlates with structure in MP mappings:
- (20) a. Rec c-commands Caus \rightarrow ALIGN-REC-R \gg ALIGN-CAUS-R (18)
 - b. Caus c-commands $\text{Rec} \to \text{Align-Caus-R} \gg \text{Align-Rec-R}$ (19)

Sam Zukoff, UCLA


The Mirror Alignment Principle

- This interaction is fully general (Zukoff 2022) cyclic concatenation can be recast using alignment rankings as follows:
- (21) The Mirror Alignment Principle (MAP) (Zukoff 2022)
 - a. If a terminal node α asymmetrically c-commands a terminal node β , then the alignment constraint referencing α dominates the alignment constraint referencing β .
 - b. Shorthand: If α c-commands $\beta \to ALIGN-\alpha \gg ALIGN-\beta$
- This generates Mirror Principle ordering.
- * Note that this means that the relative ranking of alignment constraints can differ across different derivations, dependent on structural alternations.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ◆○○○

The Mirror Alignment Principle: Architecture

Morphosyntax

Interface

MAP ranking: $ALIGN-X-R \gg ALIGN-Y-R \gg ALIGN-Z-R$ \Downarrow

Phonology

	/Root,	X, Y, Z/	Align-X-R	Align-Y-R	Align-Z-R
	a.	Root-X-Y-Z	*!*	*	
	Ь.	Root-Y-X-Z	*!	**	
	c.	Root-X-Z-Y	*!*		*
Г	d.	Root-Z-X-Y	*!		**
Г	e.	Root-Y-Z-X		**!	*
	f. 🖙	Root-Z-Y-X		*	**

CARP and Bigram Morphotactic Constraints

- CARP mappings can be accounted for using "bigram morphotactic constraints" (Ryan 2010): constraints that prefer specific orders between pairs of morphemes.
- \bullet To generate the preference for, e.g., Caus-Rec orders over Rec-Caus orders:
- (22) Caus-Rec: When exponents of Causative and Reciprocal are both present in the output, assign a violation if an exponent of Causative is not followed by an exponent of Reciprocal.
- (23) **Rec-Caus:** When exponents of Causative and Reciprocal are both present in the output, assign a violation if an exponent of Reciprocal is not followed by an exponent of Causative.
- (24) Ranking: Caus-Rec \gg Rec-Caus

Bigram Constraints and Fixed Ordering

- If a derivation contained only these bigram constraints, it would select the CARP-obeying order, regardless of the underlying structure.
- (25) Generating the CARP order: mang-its-an- (Caus precedes Rec)

/mang _{root} , its _{caus} , an _{rec} /	Caus-Rec	Rec-Caus
a. 🖙 mang-its-an- [CR]		*
b. mang-an-its- [RC]	*!	

• Some Bantu languages are rigidly CARP obeying. These languages would have invariably undominated bigram constraints.

Variable Ranking Generates Asymmetric Compositionality

- Asymmetric compositionality is derived through ranking variation:
- (26) a. $MAP \gg Bigram \Rightarrow MP \text{ order}$ b. $Bigram \gg MAP \Rightarrow CARP \text{ order}$
- \rightarrow When the structure is "CARP-obeying", these two coincide.
- * The lower-ranked bigram constraint and the lower-ranked alignment constraint have no impact on the derivation, so they are omitted.

Variable Ranking with "CARP-obeying" Structure

- When Rec is structurally higher than Caus, MP-order is CARP-obeying.
 - \rightarrow The MAP constraint (ALIGN-REC-R) and the bigram constraint prefer the same output (CR), hence, no order variation.

(27) CARP input: Bigram \gg MAP \Rightarrow Output: CR

[[[Root]Caus]Rec]	Bigram	MAP
$/\mathrm{mang}_{\mathrm{ROOT}},\mathrm{its}_{\mathrm{CAUS}},\mathrm{an}_{\mathrm{REC}}/$	Caus-Rec	ALIGN-REC-R
a. 🖙 mang-its-an- [CR]		
b. mang-an-its- [RC]	*!	** (its)

(28) **CARP input:** MAP \gg Bigram \Rightarrow Output: CR

[[[Root]Caus]Rec]	MAP	Bigram
/mang _{ROOT} , its _{CAUS} , an _{REC} /	ALIGN-REC-R	Caus-Rec
a. 🖙 mang-its-an- [CR]		1
b. mang-an-its- [RC]	*!* (its)	**

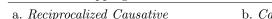
Sam Zukoff, UCLA

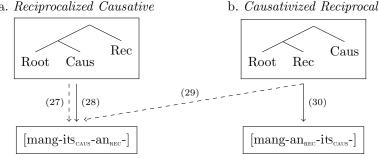
Variable Ranking with "CARP-violating" Structure

- When Caus is structurally higher than Rec, the MP-order is CARP-violating.
 - → The MAP constraint (Align-Caus-R) and the bigram constraint prefer different outputs, hence, order variation.

(29) Non-CARP input: Bigram \gg MAP \Rightarrow Output: CR

[[[Root]Rec]Caus]	Bigram	MAP	
$/\mathrm{mang}_{\mathrm{ROOT}},\mathrm{its}_{\mathrm{CAUS}},\mathrm{an}_{\mathrm{REC}}/$	Caus-Rec	Align-Caus-R	
a. 🖙 mang-its-an- [CR]		** (an)	
b. mang-an-its- [RC]	*!		


(30) Non-CARP input: Bigram \gg MAP \Rightarrow Output: RC


[[[Root]Rec]Caus]	MAP	Bigram
/mang _{root} , its _{caus} , an _{rec} /	Align-Caus-R	CAUS-REC
a. mang-its-an- [CR]	*!* (an)	
b. rang-an-its- [RC]		*

Sam Zukoff, UCLA

Local Summary

Permissible mappings between structure and order (31)

- CARP bigram [Caus-Rec] ranks higher \Rightarrow CARP order (dashed lines)
- MAP ranks higher \Rightarrow Mirror Principle order (solid lines)

 \hookrightarrow Only way to get CARP-violating order (30).

Sam Zukoff, UCLA Bantu Affix Ordering December 2-3, 2022

24 / 56

Local Conclusions

- Integrating MAP-based alignment + bigrams resolves the tension between Mirror Principle and morphological templates.
- Asymmetric compositionality falls out from the way that structure interacts with ranking variability.
- This approach requires parallel constraint interaction, partially dependent on structure.
- Cannot be replicated with cyclic concatenation.

Roadmap

- 1. Introduction
- 2. Asymmetric Compositionality
 Interpretive asymmetries between CARP forms and non-CARP forms
- 3. Suffix Doubling in Chichewa
 Restricted suffix doubling and associated asymmetric compositionality
- 4. Overapplication opacity in Nyakyusa
 Unexpected application of phonology in CARP forms dependent on structure
- 5. Conclusion

Applicative and Reciprocal in Chichewa

- Unlike with the combination of Causative and Reciprocal, Chichewa does not allow the CARP-violating MP order for an Applicativized Reciprocal:
- (32) a. CARP order ✓

 mang-il-antie-APPL-REC'tie each other for/at'
- (33) Applicative \Leftrightarrow /il/

b. Mirror order X

*mang-an-iltie-REC-APPLintended: 'tie each other for/at'

(Hyman 2003b:253)

Fixed Ordering and Bigrams

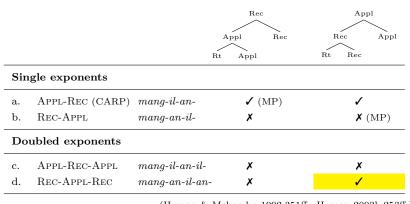
- \bullet This is an instance of "fixed ordering" $(\mbox{\scriptsize Ryan 2010}),$ as opposed to asymmetric compositionality.
- Fixed ordering can be generated by having the bigram APPL-REC invariably outrank the MAP alignment constraints.
- (34) APPL-REC: When exponents of Applicative and Reciprocal are both present in the output, assign a violation if an exponent of Applicative is not followed by an exponent of Reciprocal.

Deriving Fixed Ordering of Applicative and Reciprocal

(35) **CARP input:** Bigram \gg MAP \Rightarrow Output: AR

[[[Root]Appl]Rec]	Bigram	MAP 1	MAP 2
/mang _{root} , il _{appl} , an _{rec} /	Appl-Rec	ALIGN-REC-R	ALIGN-APPL-R
a. 🖙 mang-il-an- [AR]			** (an)
b. mang-an-il- [RA]	*!	** (il)	

(36) Non-CARP input: Bigram \gg MAP \Rightarrow Output: AR


[[[Root]Rec]Appl]	Bigram	MAP 1	MAP 2
$/\mathrm{mang}_{\mathrm{ROOT}},\mathrm{il}_{\mathrm{APPL}},\mathrm{an}_{\mathrm{REC}}/$	Appl-Rec	Align-Appl-R	ALIGN-REC-R
a. 🖙 mang-il-an- [AR]		** (an)	
b. mang-an-il- [RA]	*!		** (il)

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q ()

Suffix Doubling in Chichewa

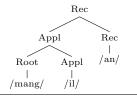
Suffix Doubling

- There's one more licit output involving Applicative and Reciprocal:
- (37) Permitted orderings of Applicative /il/ + Reciprocal /an/ in Chichewa

(Hyman & Mchombo 1992:351ff., Hyman 2003b:253ff.)

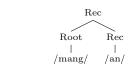
(39)

Suffix Doubling in Chichewa

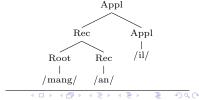

Structure and (Pseudo-)Cyclicity in Suffix Doubling

(38) Applicative first structures

a. Applicative mang-il-

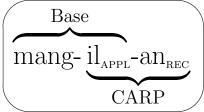


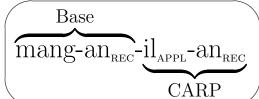
b. Reciprocalized Applicative mang-il-an-


Reciprocal first structures

a. Reciprocal mang-an-

b. Applicativized Reciprocal


* $mang-an-il- \rightarrow mang-an-il-an$


Sam Zukoff, UCLA

Have your CARP and eat it too

(40)Reciprocalized Applicative

Applicativized Reciprocal (41)

Analyzing Suffix Doubling

- Faithfulness to the base can be implemented using Base-Derivative Correspondence (Benua 1997): CONTIGUITY (McCarthy & Prince 1995).
- (42) Contiguity-BD: Assign one violation for each pair of segments which are adjacent in the base but not adjacent in the derivative.
- Doubling is penalized by an Input-Output constraint against splitting: INTEGRITY (McCarthy & Prince 1995).
- (43) Integrity-IO: Assign one violation for each segment in the input with multiple correspondents in the output.
- * Placing these two constraints in a variable ranking relation induces alternation between the doubling form and the simple CARP form.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● 夕久○

Suffix Doubling 0000000000

Suffix Doubling in Chichewa

Variation between Suffix Doubling and CARP for the Applicativized Reciprocal

Non-CARP input: Contiguity-BD ≫ Integrity-IO ⇒ doubling (44)

Base: [mang-an-] ([[Root]Rec])			
[[[Root]Rec]Appl]			i
/mang _{ROOT} , il _{APPL} , an _{REC} /	Appl-Rec	Contig-BD	Integ-IO
a. mang-il-an- [AR]		*!	
b. mang-an-il- [RA]	*!		ı
c. mang-il-an-il- [ARA]		*!	**
d. 🖙 mang-an-il-an- [RAR]			**

(45)Non-CARP input: Integrity-IO \gg Contiguity-BD \Rightarrow CARP

Base: [mang-an-] ([[Root]Rec])			i
[[[Root]Rec]Appl]			ı
$/\text{mang}_{\text{ROOT}}, \text{il}_{\text{APPL}}, \text{an}_{\text{REC}}/$	Appl-Rec	Integ-IO	Contig-BD
a. s mang-il-an- [AR]			*
b. mang-an-il- [RA]	*!		I
c. mang-il-an-il- [ARA]		*!*	*
d. mang-an-il-an- [RAR]		*!*	

34 / 56

No variation for the Reciprocalized Applicative

- No variation for the Reciprocalized Applicative because all the constraints prefer the same order:
- (46) **CARP input:** CARP/MP output (no variation)

Base: [mang-il-] ([[Root]Appl])			ı
[[[Root]Appl]Rec]			1
$/\mathrm{mang}_{\mathrm{ROOT}},\mathrm{il}_{\mathrm{APPL}},\mathrm{an}_{\mathrm{REC}}/$	Appl-Rec	Contig-BD	INTEG-IO
a. 🖙 mang-il-an- [AR]			
b. mang-an-il- [RA]	*!	*	
c. mang-il-an-il- [ARA]			*!*
d. mang-an-il-an- [RAR]		*!	*!*

Asymmetric Compositionality Suffix Doubling Opacity Conclusions References

Suffix Doubling in Chichewa

Local Conclusion

- This shows that we can analyze certain cases of suffix doubling using similar technology to the basic CARP cases.
- Crucial component: Constraints tied to morphosyntactic structure.
 - Basic cases: MAP-based alignment constraints, whose ranking dynamically alternates according to structure.
 - Doubling case: Base-Derivative faithfulness constraint, whose effect varies depending on the structure it is tied to.

* Important take-away:

Moving away from a purely cyclic architecture to a constraint-based implementation of ordering that is dynamically tied to morphosyntactic structure provides the flexibility to handle trickier phenomena.

Roadmap

- 1. Introduction
- 2. Asymmetric Compositionality
 Interpretive asymmetries between CARP forms and non-CARP forms
- 3. Suffix Doubling in Chichewa
 Restricted suffix doubling and associated asymmetric compositionality
- 4. Overapplication opacity in Nyakyusa
 Unexpected application of phonology in CARP forms dependent on structure
- 5. Conclusion

"Transitive" Suffix in Bantu

- There is one more verbal extension that participates in the CARP system in some Bantu languages.
- In Nyakyusa (Persohn 2017), it has the form /i/([i,y]).
- \bullet I'll follow Good (2005:9ff.) in referring to this as the "transitive".
 - It is usually called the (short) causative.

Properties of the "Transitive" Suffix

- In many Bantu languages, its reflex triggers some sort of palatalization on preceding segments (e.g. Hyman 2003a).
- It also participates in templatic ordering (e.g. Good 2005):
- (47) The "CARTP" template: CAUS-APPL-REC-TRANS-PASS
- \rightarrow This section will look at one particular interaction of these two properties in Nyakyusa, which results in opacity.
 - * This interaction is perhaps simpler than a lot of other similar interactions in this domain in the Bantu languages (Hyman 2003a,b), but hopefully it can serve as a model for how to start analyzing those harder problems.

Transitive in Nyakyusa

- Transitive /-i/ induces spirantization of most preceding consonants:
- (48) Transitive forms (Hyman 2003b:269, Myler 2017:105)

Basic	Basic verb		Transitive verb		
[sat-]	'be in pain'	[sa s -i̞-]	'give pain'		
[gel-]	'measure'	[ges-i-j]	'try'		
[ag-]	'run out'	[as-i-]	'make run out'		
[sok-]	'go out'	[so s -i-]	'take out'		
[tup-]	'become thick'	$[\mathrm{tu}\mathbf{f} ext{-}\mathrm{i} ext{-}]$	'thicken'		
[olob-]	'become rich'	[olo f -i̞-]	'make rich'		

- (49) Spirantization (Hyman 2003b:269, Persohn 2017:85)
 - a. Coronals/dorsals:

b. Labials:

 $/t,l,j,k,g/ \rightarrow [s] / _i$

[s] / _ i

Spirantization in Nyakyusa

- Assuming [f,s] uniquely are [+strident]:
- (50) *C_[-strident]**j**: Assign one violation for each sequence of non-strident consonant followed by a superhigh front vocoid.
- (51) **IDENT**[±**strident**]-**IO:** Assign one violation for each segment in the output which has a different value of the feature [±strident] than its correspondent in the input.
- (52) Generating spirantization in the basic case

/sat, i¸ _{TRANS} /		ANS/	$*C_{[-strident]}i$	IDENT[±strident]-IO		
a.		sa t -į	*!			
b.	呕	sa s -į		*		

Reciprocal in Nyakyusa

- Nyakyusa has the same /-an/ Reciprocal morpheme as Chichewa.
- (53) Reciprocal forms (Persohn 2017:90)

Basic verb	Reciprocal verb		
[sek-] 'laugh (at)'	[sek-an-] 'make fun of each other'		
[tuːl-] 'help'	[tu:l-an-] 'help each other'		
[tit-] 'pinch'	[tit-an-] 'pinch each other'		

• Reciprocal /-an/ can co-occur with Transitive /-i/.

Templatic Ordering of Reciprocal and Transitive

• Nyakyusa has fixed ordering of Reciprocal before Transitive according to CARTP, regardless of scope (54c,d).

(54) Transitive and reciprocal (Myler 2017:105, citing Hyman 2000:9)

```
a. [sob-] 'get lost (intr.)'b. [sof-i-] 'lose' (tr.)' (Transitive)
```

- c. [sob-an-i-] 'get each other lost' (Transitivized Reciprocal)
- d. [sof-an-i-] 'lose each other' (Reciprocalized Transitive)

Opaque Spirantization

- In the Reciprocalized Transitive (54d), we observe **spirantization** of the root-final C, even though the trigger is not adjacent.
- (54) Transitive and reciprocal (Myler 2017:105, citing Hyman 2000:9)

```
a. [sob-] 'get lost (intr.)'
b. [sof-i-] 'lose' (tr.)' (Transitive)
c. [sob-an-i-] 'get each other lost' (Transitivized Reciprocal)
d. [sof-an-i-] 'lose each other' (Reciprocalized Transitive)
```

44 / 56

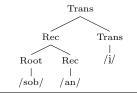
Asymmetric Spirantization

- Yet, in the Transitivized Reciprocal (54c), there is **no spirantization** of the root-final C, as we would have otherwise expected.
- (54) Transitive and reciprocal (Myler 2017:105, citing Hyman 2000:9)

```
a. [sob-] 'get lost (intr.)'
b. [sof-i-] 'lose' (tr.)' (Transitive)
c. [sob-an-i-] 'get each other lost' (Transitivized Reciprocal)
d. [sof-an-i-] 'lose each other' (Reciprocalized Transitive)
```

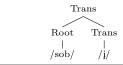
Asymmetric Opaque Spirantization

- Two things to explain:
 - 1. Why do we get spirantization in the Reciprocalized Transitive?
 - 2. Why don't we get spirantization in the Transitivized Reciprocal?

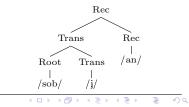

Structure and Opaque Spirantization

(55) Reciprocal first structures

a. Reciprocal sob-an-



b. Transitivized Reciprocal sob-an-i-


(56) Transitive first structures

a. Transitive sof-i-

b. Reciprocalized Transitive

$$*\underline{sof}\underline{\underline{i}}-an- \rightarrow \underline{sof}-an-\underline{\underline{i}}-$$

Sam Zukoff, UCLA

Opaque Spirantization via BD-Correspondence

- This is cyclic overapplication, as was basically suggested by Hyman (2003b).
 - \hookrightarrow Can be handled just like suffix doubling in Chichewa: BD-Correspondence.
- Overapplication of spirantization triggered by IDENT[±strident]-BD:
- (57) **IDENT**[±strident]-BD: Assign one violation for each segment in the derivative which has a different value of the feature [±strident] than its correspondent in the base.

Opacity in Nyakyusa

Deriving Opaque Spirantization

Sam Zukoff, UCLA

(58) Non-CARTP input: opaque spirantization sof-an-i-

Base: [sof-i-] ([[Root]Trans])		I	I	
[[[Root]Trans]Rec]		I	I	
/sob _{root} , i _{trans} , an _{rec} /	Rec-Trans	ID[str]-BD	$^{\rm +*C_{[-str]}i}$	ID[str]-IO
a. sob-an-j- [RT]		*!		
b. 🖙 sof-an-j- [RT]		ı	I	*
c. sob-į-an- [TR]	*!	*!	*!	
d. sof-i-an- [TR]	*!	I		*

(59) **CARTP input:** no spirantization sob-an-i- (regular non-application)

DASE. [SOD-an-] ([[ROOt]Rec])			l	
[[[Root]Rec]Trans]		I	I	
/sob _{root} , j _{trans} , an _{rec} /	Rec-Trans	ID[str]-BD	$^{\rm C}_{\rm [-str]}$	ID[str]- IO
a. sob-an-j- [RT]		 		
b. sof-an-j- [RT]		*!		*
c. sob-į-an- [TR]	*!	*!	*!	
d. sof-i-an- [TR]	*!			*

Bantu Affix Ordering December 2-3, 2022

49 / 56

Asymmetric Compositionality Suffix Doubling Opacity Conclusions References

Opacity in Nyakyusa

Local Conclusions

- BD-Correspondence generates restricted overapplication in the same way it generates restricted suffix doubling.
- This approach generates "cyclic" opacity without having to posit reordering or movement by drawing on insights of cyclic phonology/morphology without implementing a literally cyclic framework.

Roadmap

- 1. Introduction
- 2. Asymmetric Compositionality
 Interpretive asymmetries between CARP forms and non-CARP forms
- 3. Suffix Doubling in Chichewa
 Restricted suffix doubling and associated asymmetric compositionality
- 4. Overapplication opacity in Nyakyusa
 Unexpected application of phonology in CARP forms dependent on structure
- 5. Conclusion

Conclusion

Summary

- This talk examined three phenomena related to the CARP template:
 - 1. Asymmetric compositionality
 - 2. Suffix doubling
 - 3. Overapplication opacity

Asymmetric Compositionality Suffix Doubling Opacity Conclusions Reference

Conclusion

Conclusion

- In each case, indirect reference to morphosyntactic structure has played a crucial role in deriving an asymmetry.
 - Differential ranking of alignment constraints driven by the MAP for asymmetric compositionality
 - 2. Different properties of bases connected by BD-faithfulness for doubling and overapplication.
- \star Integrating templatic and non-templatic morphology requires indirect reference to morphosyntactic structure through parallel constraint interaction.
 - → Morphological templates preclude cyclic concatenation without additional mechanisms.

Conclusion

Big-picture Takeaway

- Structure is crucial even in templatic morphology.
 - → The latter two cases involved fixed ordering where it is not obvious the Mirror Principle is in effect at all.

Thank you!

References

Baker, Mark. 1985. The Mirror Principle and Morphosyntactic Explanation. Linguistic Inquiry 16(3):373-415.

- Benua, Laura. 1997. Transderivational Identity: Phonological Relations Between Words. PhD Dissertation, University of Massachusetts, Amherst.
- Good, Jeff. 2005. Reconstructing Morpheme Order in Bantu: The Case of Causativization and Applicativization. Diachronica 22(1):3-57.
- Hyman, Larry M. 2000. Bantu Suffix Ordering and its Phonological Consequences. Talk Presented at University of California, Berkeley.
- ——. 2003a. Sound Change, Misanalysis, and Analogy in the Bantu Causative. Journal of African Languages and Linguistics 24:55-90.
- ——. 2003b. Suffix Ordering in Bantu: A Morphocentric Account. In Geert Booij & Jaap van Marle (eds.), Yearbook of Morphology 2002, 245-281. Kluwer.
- Hyman, Larry M. & Sam Mchombo. 1992. Morphotactic Constraints in the Chichewa Verb Stem. In BLS 18: Proceedings of the Eighteenth Annual Meeting of the Berkeley Linguistics Society: General Session and Parasession on The Place of Morphology in a Grammar (1992), 350-364.
- McCarthy, John J. & Alan Prince. 1993. Generalized Alignment. In Geert Booij & Jaap van Marle (eds.), Yearbook of Morphology 1993, 79-153. Kluwer. doi:10.1007/978-94-017-3712-8'4.
- ——. 1995. Faithfulness and Reduplicative Identity. In Jill Beckman, Suzanne Urbanczyk & Laura Walsh Dickey (eds.), Papers in Optimality Theory (University of Massachusetts Occasional Papers in Linguistics 18), 249-384. Amherst, MA: Graduate Linguistics Student Association.
- Mchombo, Sam. 2004. The Syntax of Chichewa. Cambridge, UK: Cambridge University Press.
- Myler, Neil. 2017. Exceptions to the Mirror Principle and Morphophonological 'Action at a Distance': The Role of 'Word'-Internal Phrasal Movement and Spell-Out. In Heather Newell, M\u00e4ire Noonan, Glyne Piggott & Lisa Travis (eds.), The Structure of Words at the Interfaces, 100-125. Oxford: Oxford University Press.
- Persohn, Bastian. 2017. The Verb in Nyakyusa: A Focus on Tense, Aspect and Modality (Contemporary African Linguistics 2). Berlin: Language Science Press. doi:10.5281/ZENODO.926408.
- Ryan, Kevin M. 2010. Variable Affix Order: Grammar and Learning. Language 86(4):758-791.
- Zukoff, Sam. 2022. The Mirror Alignment Principle: Morpheme Ordering at the Morphosyntax-Phonology Interface. Natural Language & Linguistic Theory. doi:10.1007/s11049-022-09537-2.

4□ ► 4₫ ► 4½ ► 4½ ► ½ · 900