Class 5
 Assimilation 2

Sam Zukoff
LING 301, Spring 2022, USC

January 26, 2022

Lithuanian continued

Review

\triangleright Can someone remind us about our analysis of the $[$ at- $] \sim[$ ad- $]$ alternation in Lithuanian?

at-eiti	'to arrive'	at-praji:ti	'to ask'
at-imti	'to take away'	at-kurti	'to reestablish'
at-nefti	'to bring'	ad-bekti	'to run up'
at-leisti	'to forgive'	ad-gauti	'to get back'
at-likti	'to complete'	ad-bukti	'to become blunt'
at-ko:pti	'to rise'	ad-gimti	'to be born again'

Lithuanian continued

Review

- Our analysis of the [at-] ~ [ad-] alternation in Lithuanian.

at-eiti	'to arrive'	at-prafisti	'to ask'
at-imti	'to take away'	at-kurti	'to reestablish'
at-nefti	'to bring'	ad-bekti	'to run up'
at-leisti	'to forgive'	ad-gauti	'to get back'
at-likti	'to complete'	ad-bukti	'to become blunt'
at-ko:pti	'to rise'	ad-gimti	'to be born again'

(1) /-voi,+alv,--son,--cont/ $\rightarrow[+$ voi, +alv,,- son,,- cont $] / ~ _[+ \text {voi, }- \text { son }]$

- The change in $[\pm$ voice $]$ matches the environment, making the sounds more similar: this is a voicing assimilation rule.

Lithuanian continued

More data
\triangleright Here's some more Lithuanian. Who can tell me what's going on?

ap-eiti	'to circumvent'	ab-gauti	'to deceive'
ap-iefko:ti	'to search everywhere'	ab-3 ${ }^{\text {j }}$ ureti	'to have a look at'
ap-akti	'to become blind'	ab-3 ${ }^{\text {j }}$ elti	'to become overgrown'
ap-mo:kiti	'to train'	ab-dauj ${ }^{\text {j i iti }}$	'to damage'
ap-temdisti	'to obscure'	ab-draskiti	'to tear'
ap-Jaukti	'to proclaim'		

Lithuanian continued

Voicing assimilation again

- Voicing assimilation again!

ap-eiti	'to circumvent'	ab-gauti	'to deceive'
ap-iefko:ti	'to search everywhere'	ab- $3^{\text {j }}$ ureti	'to have a look at'
ap-akti	'to become blind'	ab-3 ${ }^{\text {j }}$ elti	'to become overgrown'
ap-moskisti	'to train'	ab-dau3 ${ }^{\text {j }}$ iti	'to damage'
ap-temdisti	'to obscure'	ab-draskisti	'to tear'
ap-Saukti	'to proclaim'		

- Voiceless bilabial stops become voiced bilabial stops before voiced obstruents.
(2) $/$ - voi,+ lab, - son,- cont $/ \rightarrow[+$ voi,+ lab,- son,- cont $] / _[+ \text {voi, }- \text { son }]$
- And here we're seeing fricatives conditioning the assimilation, not just stops.
- This clarifies that we do want to be talking about obstruents, not just stops.

Lithuanian continued

Our voicing assimilation rules
\rightarrow We now have two different voicing assimilation rules. Let's compare them.

- For alveolars:
(1) /-voi,+alv,-son,--cont/ \rightarrow [+voi,+alv,--son,--cont $] / \quad[+$ voi,--son $]$
- For labials:
(2) /-voi,+lab,--son,--cont/ \rightarrow [+voi,+lab,--son,--cont] / _[+voi,--son $]$
\triangleright Are we missing something?

Lithuanian continued

Our voicing assimilation rule
\rightarrow We now have two different voicing assimilation rules. Let's compare them.

- For alveolars:
(1) /-voi, +alv,--son,--cont/ \rightarrow [+voi, +alv,, son,--cont $] / \quad[+$ voi,--son $]$
- For labials:
(2) /-voi, +lab,--son,--cont/ \rightarrow [+voi, +lab,--son,--cont] / _[+voi,--son]
- These two rules are the same except for their specification of place.

Lithuanian continued

Our voicing assimilation rule

\rightarrow We only need one rule:

- For alveolars:
(1) $/-$ voi, + alv,- son, - cont $/ \rightarrow[+$ voi, + alv,- son,- cont $] / \quad[+$ voi, - son $]$
- For labials:
(2) $/$-voi, + lab,, son, - cont $/ \rightarrow[+$ voi, + lab,- son,- cont $] / \quad[+$ voi, - son $]$
- These two rules are the same except for their specification of place.
- If we remove the place specification, we can capture both processes with a single rule:
(3) /-voi,-son,-cont/ $\rightarrow[+$ voi,-son,--cont $] / \quad[+$ voi,-son $]$

Natural classes

A natural class in Lithuanian

- For alveolars:
(1) $/-$ voi, +alv,,- son,,- cont $/ \rightarrow[+$ voi, + alv,- son,,$-c o n t] / ~ _[+ \text {voi,--son }]$
- For labials:
(2) /-voi, +lab,--son,--cont/ \rightarrow [+voi, +lab],-son,--cont $] / \quad[+$ voi,--son $]$
- For any place:
(3) /-voi,--son,--cont/ \rightarrow [+voi,--son,--cont] / _[+voi,--son $]$
- Instead of applying to only one segment, this unitary rule applies to a natural class of segments:
- All the segments in the language that share the feature specification /-voi,--son,--cont/.

Natural classes

A natural class in Lithuanian

- Here's all of the consonants of Lithuanian again.

	Labial		Alveolar		Palatal	Velar		
Stops	p	b	t	d			k	g
Affricates			ts	d	y	d		
Fricatives	f	v	s	z	\int	3	x	f
Nasals		m		n				
Approximants				l, r		j		

\triangleright Which consonants should this rule apply to?
(3) /-voi,--son,--cont/ \rightarrow [+voi,--son,--cont $] / ~ _[+ \text {voi,--son }]$

Natural classes

A natural class in Lithuanian
\rightarrow All the voiceless stops and affricates.

	Labial	Alveolar	Palatal	Velar
Stops	p b	t d		k g
Affricates		ts dz	tf d3	
Fricatives	f V	S Z	$\int 3$	X X
Nasals	m	n		
Approximants		l,r	j	

\triangleright Which consonants should this rule apply to?
(3) /-voi,-son,-cont/ $\rightarrow[+$ voi,--son,--cont $] / \quad[+$ voi,-son $]$

Natural classes

A natural class in Lithuanian

\triangleright What prediction does our rule make about voiceless fricatives?

	Labial		Alveolar		Palatal	Velar		
Stops	\mathbf{p}	b	\mathbf{t}	d			\mathbf{k}	g
Affricates			ts	dz	\mathbf{y}	d		

(3) $/$-voi, - son, - cont $/ \rightarrow[+$ voi, - son,- cont $] / \quad[+$ voi,- son $]$

Natural classes

A natural class in Lithuanian

\triangleright What prediction does our rule make about voiceless fricatives?

	Labial		Alveolar		Palatal		Velar	
Stops	p	b	t	d			k	g
Affricates			ts	dz		d		
Fricatives	f	V	S	Z	¢	3	X	V
Nasals		m		n				
Approximants				$1, \mathrm{r}$		j		

(3) $/$-voi,-son,-cont $/ \rightarrow[+$ voi, -son, - cont $] / \ldots[+$ voi, - son $]$

- This rule predicts that voiceless fricatives won't participate in voicing assimilation, because they are [+ continuant $]$.

Natural classes

A natural class in Lithuanian

\triangleright Do you think this prediction is correct?

	Labial	Alveolar		Palatal		Velar	
Stops	p b	t	d			k	g
Affricates		ts	dz		d		
Fricatives	f V	S	Z	¢	3	X	Y
Nasals	m		n				
Approximants			1,r		j		

(3) $/-$ voi,-son,-cont $/ \rightarrow[+$ voi, - son, - cont $] / \ldots[+$ voi,- son $]$

- This rule predicts that voiceless fricatives won't participate in voicing assimilation, because they are [+continuant].

Natural classes

Lithuanian fricatives and voicing assimilation

- The voiceless fricatives do participate in voicing assimilation:

$$
\begin{array}{llll}
\text { /kas-davo:/ } & \rightarrow & \text { [kazdavo:] } & \text { 'dug' } \\
/ \text { nef-dam-a/ } & \rightarrow & \text { [ne3dama] } & \text { 'carry' }
\end{array}
$$

* /f,x/ are rare sounds in Lithuanian, so I haven't found any examples, but we predict they should behave the same as $/ \mathrm{s}, \mathrm{f} /$.

Natural classes

Lithuanian fricatives and voicing assimilation

- The voiceless fricatives do participate in voicing assimilation:

$$
\begin{array}{llll}
/ \text { kas-davo:/ } & \rightarrow & \text { [kazdavo:] } & \text { 'dug' } \\
/ \text { ne } \int \text {-dam-a/ } & \rightarrow & \text { [nezdama] } & \text { 'carry' }
\end{array}
$$

* $/ \mathrm{f}, \mathrm{x}$ / are rare sounds in Lithuanian, so I haven't found any examples, but we predict they should behave the same as $/ \mathrm{s}, \mathrm{J} /$.
\triangleright Should this change our rule?
(3) /-voi,--son,--cont/ \rightarrow [+voi,--son,--cont] / _[+voi,--son]

Natural classes

Updating our rule

- The voiceless fricatives do participate in voicing assimilation:

$$
\begin{array}{llll}
\text { /kas-davo:/ } & \rightarrow & \text { [kazdavo:] } & \text { 'dug' } \\
/ \text { nef-dam-a/ } & \rightarrow & \text { [ne3dama] } & \text { 'carry' }
\end{array}
$$

* /f,x/ are rare sounds in Lithuanian, so I haven't found any examples, but we predict they should behave the same as $/ \mathrm{s}, \mathrm{J} /$.
\triangleright Should this change our rule? Yes!
(3) /-voi,--son, -cont/ \rightarrow [+voi,--son, -cont] / _[+voi,--son]
(4) /-voi,--son/ \rightarrow [+voi,--son] / _[+voi,--son $]$
- This shows that the context and the change match up perfectly:
\rightarrow Both deal exclusively with voicing and sonorancy.

Natural classes

The benefits of natural classes
(4) $\quad /-$ voi, - son $/ \rightarrow[+$ voi, - son $] / _[+ \text {voi },- \text { son }]$

- Thinking about rules in terms of natural classes is important for a number of reasons:

Natural classes

The benefits of natural classes
(4) $\quad /-$ voi, - son $/ \rightarrow[+$ voi, - son $] / _[+ \text {voi, },- \text { son }]$

- Thinking about rules in terms of natural classes is important for a number of reasons:
- It lets you capture rules that apply to more than one segment, which makes your analysis simpler (as opposed to restating the equivalent rule for each segment).

Natural classes

The benefits of natural classes
(4) /-voi,--son/ \rightarrow [+voi,--son] / _[+voi,--son]

- Thinking about rules in terms of natural classes is important for a number of reasons:
- It lets you capture rules that apply to more than one segment, which makes your analysis simpler (as opposed to restating the equivalent rule for each segment).
- It lets you understand the motivation behind the rule, because it lets you drill down on the features that are actually important.

Natural classes

The benefits of natural classes
(4) $\quad /-$ voi, - son $/ \rightarrow[+$ voi, - son $] / _[+ \text {voi, },- \text { son }]$

- Thinking about rules in terms of natural classes is important for a number of reasons:
- It lets you capture rules that apply to more than one segment, which makes your analysis simpler (as opposed to restating the equivalent rule for each segment).
- It lets you understand the motivation behind the rule, because it lets you drill down on the features that are actually important.
- It makes predictions about the way that your rules work in the language on the whole, so you can be more sure that you have the right analysis.

Natural classes

The benefits of natural classes
(4) $\quad /-$ voi, - son $/ \rightarrow[+$ voi, - son $] / _[+ \text {voi, },- \text { son }]$

- Thinking about rules in terms of natural classes is important for a number of reasons:
- It lets you capture rules that apply to more than one segment, which makes your analysis simpler (as opposed to restating the equivalent rule for each segment).
- It lets you understand the motivation behind the rule, because it lets you drill down on the features that are actually important.
- It makes predictions about the way that your rules work in the language on the whole, so you can be more sure that you have the right analysis.
\rightarrow Rules (almost) always apply to natural classes, rather than a collection of segments defined by a disjoint set of features.

English consonants

The consonants of English

- Here's the consonant chart for English, including major place features, which group specific places together based on the nature of their articulation.

	labial		coronal			dorsal	glottal
	Biabial	Labiodental	Interdental	Alvolar	Palatal	Velar	${ }_{\text {clotal }}$
Stops	p b			t d		k g	
Affricates					t9 \%		
Fricatives		f v	θ ð	s z	$\int 3$		h
Nasals	m			n		ๆ	
Liquids				l,ı			
Glides	w				j		

English consonants

Labials

- The feature labial groups together bilabial (constriction with both lips) and labiodental (constriction between lower lip and upper teeth).

	Labial		CORONAL			DORSAL	glottal
	Bilabial	Labiodental	Interdental	Alveolar	Palatal	Velar	Glottal
Stops	p b			t d		$\mathrm{k} \quad \mathrm{g}$	
Affricates					¢ 0		
Fricatives		f v	θ ð	S Z	$\int 3$		h
Nasals	m			n		η	
Liquids				l, ז			
${ }_{\text {Glides }}$	w				j		

English consonants

Coronals

- The feature coronal groups together interdental (tongue tip between/at the teeth), alveolar (tongue tip at the alveolar ridge), and postalveolar/palatal (tip/middle of tongue at/near hard palate).

	LABIAL		CORONAL					DORSAL
GLOTTAL								
	Bilabial	Labiodental	Interdental	Alveolar	Palatal	Velar	Glottal	
Stops	p	b				t	d	

English consonants

Dorsals

- The feature dorsal groups together velar (tongue body up to soft palate) and uvular [not used in English] (tongue body back to uvula).

	LABIAL			CORONAL					DORSAL	GLOTTAL	
	Bilabial	Labiodental	Interdental	Alveolar	Palatal	Velar	Glottal				
Stops	p	b					t	d		k	g

English consonants

Glottals

- The feature glottal refers just to glottal sounds (constriction at the vocal folds).

	LABIAL		Coronal			DORSAL Velar	$\begin{gathered} \text { GLOTTAL } \\ \hline{ }_{\text {Glottal }} \end{gathered}$
	${ }^{\text {Bilabial }}$	Labiodental	Interdental	Alveolar	Palatal		
Stops	p b			t d		$\mathrm{k} \quad \mathrm{g}$	
Affricates					¢ 0		
Fricatives		f v	θ ð	S Z	$\int 3$		h
Nasals	m			n		η	
Liquids				l, ז			
Glides	w				j		

English consonants

(Marginal) allophones

- The (voiceless) glottal stop [?], voiced glottal fricative [f], the (voiced) labiodental, dental, and palatal nasals [$\mathrm{m}, \mathrm{n}, \mathrm{n}]$, and the (voiced) alveolar flap [r] are all sounds that appear as allophones in English.

	LABIAL		Coronal			DORSAL Velar	Glottal Glottal
	Bilabial	Labiodental	Interdental	Alveolar	Palatal		
Stops	p b			t d		$\mathrm{k} \quad \mathrm{g}$	(1)
Affricates					¢ 0		
Fricatives		f v	θ б	S z	$\int 3$		h (f)
Nasals	m	(m)	(n)	n	(n)	η	
Liquids				1,x			
Glides	w			(r)	j		

English consonants

Practice with natural classes in English!

- Now that we know all the consonant sounds and consonant features, let's work on identifying natural classes. (Prompts on the handout.)

	LABIAL		CORONAL			$\begin{gathered} \text { DORSAL } \\ \hline \text { Velar } \end{gathered}$	glottal Glottal
	Bilabial	Labiodental	Interdental	Alveolar	Palatal		
Stops	p b			t d		k g	(3)
Affricates					t9 ${ }^{\text {d }}$		
Fricatives		f v	θ б	S z	$\int 3$		h (f)
Nasals	m	(m)	(n)	n	(n)	ๆ	
Liquids				1,x			
Glides	w			(r)	j		

