Class 16

Syllable Structure

3/9/2022

1 Syllables

- * So far, we've talked just about strings of sounds (segments).
- \rightarrow However, there's good reason to think there are ways of arranging sounds into hierarchical structures, in much the same way as we did with features.
- A syllable is a phonological unit comprised of one or more speech sounds.
 - \circ It's an intermediate unit between the individual sounds and the words they make up.
- Words are divided up into syllables.
 - o Syllable boundaries are indicated by periods.
 - \circ Syllable is often abbreviated as sigma σ .
- (1) a. a.pa.la.chi.co.la [æ.pə.læ.fʃr.koʊ.lə] \rightarrow 6 syllables
 - b. $cat [kæt] \rightarrow 1 \text{ syllable}$
- Every word contains at least one syllable.
 - Every syllable is built around a vowel (or a consonant masquerading as a vowel; see below).
 - \rightarrow Every vowel creates its own syllable.
 - \hookrightarrow That's why we call them [+syllabic].

2 The parts of a syllable

- Within the syllable, we can identify several important **constituents** (sub-groupings).
 - Syllables consist of three main constituent parts:
- (2) Components of a syllable
 - a. Onset: initial consonant or consonants
 - b. **Nucleus:** the vowel (can be a monophthong or a diphthong)
 - c. Coda: final consonant or consonants
 - Nucleus and coda form a constituent called the **rhyme** (or rime).
 - [I'll usually omit the *rhyme* constituent in the trees below.]
- (3) Syllable tree

Types of syllables

- \Rightarrow We name syllable types by their sequences of consonants (C) and vowels (V).
- \Rightarrow We classify syllable types by the properties of their constituent parts.
- The nucleus is always present, but the onset and/or the coda may be present or absent.
- Each constituent that is present can be either:
 - 1. Simple (simplex) = consisting of exactly one member, or
 - 2. Complex = consisting of more than one member
- Languages vary about what types of syllables and what types of syllabic constituents they allow.
 - * In the general case, whatever types of syllabic constituents that a language does allow can be freely combined with one another.

3.1 The nucleus

- Syllables can consist of just a vowel (either a monophthong or a diphthong).
- A monophthong creates a **simple** nucleus.
- A diphthong creates a complex nucleus.
- (4) The word "a" (English indefinite article):
 - σ Nuc

Λ

(5) The word "oh":

 \star This syllable is of type V.

- \star We can refer to this syllable type as VV.
- In languages that have **long vowels**, long vowels count as VV (a complex nucleus).

3.2 The onset

- Consonants that join onto a syllable and **precede the nucleus** are called the **onset** of the syllable.
- A **simple** onset has *exactly one* consonant:
- A **complex** onset has *more than one* consonant:

- (6) The word "pay":
 - Onset Nuc

(7) The word "play":

 \star This syllable is of type CV.

* This syllable is of type CCV.

3.3 The coda

- Consonants that join onto a syllable and follow the nucleus are called the coda of the syllable.
- A **simple** coda has *exactly one* consonant:
- (8) The word "in":

* This syllable is of type VC.

- A **complex** coda has *more than one* consonants:
- (9) The word "imps":

- * This syllable is of type VCCC.
- (10) The word "itch":

 \star This syllable is of type VC.

4 Principles of syllabification

** NOTE: Affricate counts as single consonants.

4.1 Monosyllabic (1σ) words and word edges

- A good way to check what types of syllables a language allows is by looking at words that consist of exactly 1 syllable:
- (11) The word "mom":

- \star This syllable is of type CVC.
- (13) The word "latch":

 \star This syllable is of type CVC.

(12) The word "laughs":

- \star This syllable is of type CVCC.
- (14) The word "splash":

 $\star \ \textit{This syllable is of type CCCVC}.$

(15) The word "print":

* This syllable is of type CCVCC.

(16) The word "sprints":

- * This syllable is of type CCCVCCC.
- In some languages, there might be few or no 1 syllable words. In that case, the closest you can get to this method is by looking just at the word edges:
- (17) **Foolproof place to look for onsets:** At the beginning of a word! All consonants at the beginning of a word MUST be an onset to whatever the first vowel is.
- (18) **Foolproof place to look for codas:** At the end of a word! All consonants at the end of a word MUST be a coda to whatever the last vowel is.
- You can usually extrapolate from word edges to word-internal onsets and codas.

4.2 Word-medial syllabification and the sonority scale

- Languages tend to like having onsets and dislike having codas.
 - * We can call this the "maximize the onset" principle.
- ⇒ A single consonant between two vowels always(?) gets syllabified as an onset, not a coda: [bʌ.ni] not *[bʌn.i]
- (19) The word "bunny":

- * There are two syllables in this word. The first is of type CV, and so is the second.
- When there are multiple consonants between vowels, the choice of whether or not to apply the "maximize the onset" principle is subject to "sonority".
- We know about the feature [±sonorant]:
- (20) a. Obstruents [-sonorant]: stops, fricatives, affricates b. Sonorants [+sonorant]: nasals, liquids, glides, vowels
- The related notion of "sonority" turns this into a scale:
- (21) Sonority scale

- Syllables are generally constructed around sonority peaks (which usually means vowels).
 - The nucleus is the sonority peak.
 - Sonority normally rises from the beginning of the syllable (the onset) to the nucleus.
 - Sonority normally falls from the nucleus to the end of the syllable (coda).
- If a language allows **complex onsets and/or codas**, it usually places restrictions on the *relative sonority* of the first and second consonant in the complex onset/coda. The restrictions are mirror images of each other:
 - \rightarrow In a complex onset: the *steeper* the sonority **rise**, the better.
 - \rightarrow In a complex coda: the *steeper* the sonority **fall**, the better.
- For example, English allows stop + liquid complex onsets (with a big sonority rise), but not stop + nasal (with a small sonority rise): ✓ play vs. x pnay
 - (NB: borrowings like *pneumonia* pronounced with just [n], not *[pn])
- So, the way that maximize the onset interacts with sonority is:
- (22) For a sequence of consonants between vowels:
 - a. If they have a sonority profile that the language allows for complex onsets, they get syllabified as a complex onset.
 - b. If they don't, they get syllabified as coda + simple onset.
- ★ In English, and many other languages, [s] can show up in places where it violates these sonority principles.
- (23) Example syllable trees
 - a. Syllable tree for entrance
- b. Syllable tree for tractors

- c. Syllable tree for *print*
- d. Syllable tree for *sprints*

5 Syllabic consonants

- Consonants can sometimes function like vowels and form the nucleus of a syllable.
 - When they do this, we mark them with a vertical line below: [m]
- (24) Syllabic final consonants

```
bottle ['ba.rl] bottom ['ba.rm] butter ['ba.rl] button ['ba.rn]
```

- Most languages don't allow syllabic consonants.
- Among those that do: the more sonorous the consonant, the more likely it is to be allowed as a syllable nucleus.

6 Deletion in Samoan

- Last time, we determined that the best way to understand the alternations in (26) was to posit the deletion rule in (25).
- (25) $C \rightarrow \emptyset / \#$
- (26) Deletion in Samoan

Simple	Perfective	Gloss	Simple	Perfective	Gloss
tur	tu:l-ia	'stand'	au	au l-ia	'flow on'
tau	tau l-ia	'cost'	martau	martau l-ia	'observe'
?alo	?alo <mark>f-ia</mark>	'avoid'	ili	ili f-ia	'blow'
oso	oso f-ia	ʻjump'	ulu	ulu f-ia	'enter'
asu	asu <mark>ŋ-ia</mark>	'smoke'	soa	soa ŋ-ia	'have a friend'
$_{\mathrm{pole}}$	pole <mark>ŋ-ia</mark>	'be anxious'	fesili	fesili ŋ-ia	'question'
$_{ m milo}$	milo s-ia	'twist'	la?a	la?as- <mark>ia</mark>	'step'
valu	valu s-ia	'scrape'	taŋi	taŋi s-ia	'cry'
api	apit- <mark>ia</mark>	'be lodged'	mata?u	mata?ut- <mark>ia</mark>	'fear'
lava:	lava:t- ia	'be able'	o?o	o?ot- ia	'arrive'
si?o	si?om- <mark>ia</mark>	'be enclosed'	mo?o	mo?om- <mark>ia</mark>	'admire'
sopo	sopo ?-ia	'go across'	fana	fana <mark>?-ia</mark>	'shoot'

* Can we use syllables to understand this rule better?