Class 1 Introduction to Reduplicant Shape

4/4/2023

1 Introduction

Reduplication: a class of processes where the phonological exponent of a morphological category is formed by "copying" material from a different portion of the phonological output.

- ⇒ The phonological material indicating the category co-varies with the phonological material of the particular base it attaches to, rather than being fixed across bases.
- For example, Diyari makes diminutives by prefixing a copy of (roughly) the first two syllables of the base:
- (1) Divari diminutive reduplication (Austin 1981:64)

a.	2σ	pirta	'tree'	\rightarrow	pirta- $pirta$	'small tree'
b.	3σ	kin thal a	'dog'	\rightarrow	<u>kintha</u> -kinthala	'little dog, puppy'
с.	4σ	wilh apin a	ʻold woman'	\rightarrow	wilha-wilhapina	'little old woman'

• Terminology:

- *Reduplicant*: The "copy", i.e. the portion of the output word which consistently depends on the phonological properties of the rest of the word. (Usually indicated by underlining.)
- \circ Base: The portion of the output word which the reduplicant copies (basically, everything which isn't the reduplicant).
- It's not always possible to be sure which string is the reduplicant and which is the base.
 - $\circ\,$ In cases of total reduplication especially, the distinction often doesn't matter.
- It is often a matter of analysis which part is identified as the reduplicant.
 - The distinction is more significant in some theories (e.g. Base-Reduplicant Correspondence Theory; McCarthy & Prince 1995, 1999) than others (e.g. Morphological Doubling Theory; Inkelas & Zoll 2005).

• Two big questions for the quarter:

- 1. There is systematic variation (cross-linguistically and intra-linguistically) in the shapes of reduplicants. What considerations go into determining reduplicant shape?
- 2. Phonological processes/distributions frequently do not apply transparently in reduplicated words. What theoretical machinery is required to accurately and restrictively describe the set of attested nontransparent reduplication-phonology interactions?

2 Basic dimensions of variation in reduplicant shape

2.1 Total reduplication vs. partial reduplication

1. Total reduplication: an entire word (or morphological constituent) is copied; e.g. Indonesian (2).

- $\circ\,$ The two parts often act like independent words, or like the two members of a compound.
- The two parts usually look completely identical to corresponding unreduplicated word in isolation (\approx the "reduplicant" is a fully faithful duplicate of the base).
- Total reduplication patterns often don't show much interesting phonology. But,
 - \circ Javanese total reduplication (Dudas 1976) is important for understanding "over-application" and "under-application" opacity in reduplication and how phonology interacts with reduplication generally.
 - $\circ\,$ Indonesian shows interesting interactions between stress/accent and reduplication:

(2)	Plural reduplication in Indonesian	McCarthy & Cohn	1998.32 52 cf Cohn 1989.185)	
ſ	4)	I futal fecuplication in muonesian	medatiny & com	1330.52, 52, 01, 000011303.100)	

	indefinite		definite				
a.	<u>búku</u> -búku	'books'	<u>bùku</u> -bukú-ña	'the books'			
b.	<u>waníta</u> -waníta	`women'	<u>wanìta</u> -wanitá-an	'womanly' $(adj.)$			
c.	<u>màsarákat</u> -màsarákat	`societies'	<u>màsaràkat</u> -màsarakát-ña	'the societies'			
d.	$\underline{\min}(-)an-\min}$	'drinks'	$\underline{\min}(-)an$ -mìnum-án-ña	'the drinks'			

- \circ In the indefinite, where the reduplicated word is unsuffixed (or the two members contain the same suffixes), both members bear primary stress.
- $\circ\,$ In the definite, where the reduplicated word is suffixed, the first member now gets a secondary stress instead.
- Some people have interpreted this to be an effect of *identity* between base and reduplicant (Kenstowicz 1995, McCarthy & Cohn 1998, Stanton & Zukoff 2016); others have attributed it to more general properties of the morphological system of the language (Inkelas & Zoll 2005:§4.3).
 - \Rightarrow The question of what aspects of reduplication belong to morphology and which belong to phonology is one of the major issues we'll be concerned with.
 - 2. *Partial reduplication*: the reduplicant "copies" a phonological substring from the base; morphological constituency is (usually) ignored.

• The copied substring may coincide with a constituent in some forms, but this is accidental.

- For example, Diyari partial reduplication copies two syllables.
 - When the root is two syllables (1a), it looks like the whole root is being copied.
 - But when the root is longer (1b,c), we see that the process is not actually targeting the root.
- Partial reduplication frequently displays phonological restrictions which do not hold of other parts of the language's phonology.
 - This (virtually) always goes in the direction of having *less marked* structures in the reduplicant than elsewhere the emergence of the unmarked (TETU; McCarthy & Prince 1994a).
 - I'll argue that the disyllabic shape of the reduplicant in languages like Diyari is an instance of TETU, in that such a shape is optimal for the language's stress pattern.

2.2 Number of syllables/moras that get copied

- 1. 1 syllable; e.g. Sanskrit (3)
- 2. 2 syllables; e.g. **Diyari** (1)/(4)
- 3. Variable yet predictable; e.g. **Ponapean** (5): varies predictably between 1 and 2 moras

• Sanskrit perfect tense reduplication always copies a CV syllable from the left edge

(3) Sanskrit perfect reduplication (Whitney 1885, Steriade 1988) a. \sqrt{dar} -'pierce' \rightarrow da-dấr-a 'I have pierced' b. $\sqrt{beud^h}$ -'wake' \rightarrow $bu-bud^h-úr$ 'They have woken' \sqrt{pais} -'crush' pi-pis-úr 'They have crushed' с. \rightarrow

• Diyari diminutive reduplication always copies the first two syllables from the left edge

(4) Divari diminutive reduplication (Austin 1981:38, 64)

a.	2σ	pirta	'tree'	\rightarrow	pirta- $pirta$	
b.	3σ	kin thal a	'dog'	\rightarrow	\overline{kintha} -kinthala	
с.	3σ	ty ilparku	bird type	\rightarrow	tyilpa- $tyilparku$	(*tyilpar-tyilparku)
d.	3σ	ngankanthi	'cat fish'	\rightarrow	\overline{ngan} ka-ngankanthi	$(*\overline{ngankan}-ngankanthi)$
e.	4σ	wilh a pin a	ʻold woman'	\rightarrow	wilha-wilhapina	

- Ponapean copies one or two moras from the left edge, depending on properties of the base
- (5) Ponapean reduplication (Kennedy 2002:225)

	1-mora stem	2-mora stem	3-mora stem	4-mora stem
	pàa-pá	<u>dun</u> ̀-duné	<u>dùu</u> -dùupék	<u>riì</u> -ri.àalá
2-mora reduplicant	tèpi-tép	sipì-sipéd	<u>mèe</u> -mèelél	
	<u>dòn</u> -dód	<u>dià</u> -dilíp	<u>lìi</u> -lì.aán	
1 mora roduplicant		<u>dù</u> -duúp		<u>tò</u> -toòroór
				<u>sò</u> -soùpisék

 \rightarrow No language consistently copies three syllables/moras. This is probably related to facts about prosodic structure. (More on this next time.)

2.3 Conditions on codas/syllable weight

Syllable has to be *light/open*; e.g. Sanskrit perfect reduplication (3), second syllable in Diyari (4c,d)
 Syllable has to be *heavy/closed*; e.g. Ilokano (6)

- One of the reduplication patterns in Ilokano consistently has a heavy syllable in the reduplicant.
 - $\circ\,$ If the first syllable of the base is heavy (6a), copy the first syllable of the base as is.
 - \circ If the first syllable of the base is open (6b–d), copy the first syllable + the first following onset consonant (and parse the copy as a coda).
 - $\circ\,$ If the first syllable of the base is open and followed by a [?] (6e,f), copy the first syllable and lengthen the vowel.

(6) Heavy σ reduplication in Ilokano (McCarthy & Prince 1986:3,10; Hayes & Abad 1989)

a.	/takder/	\rightarrow	?ag- <u>tak</u> -tak.der	'be standing'
b.	/basa/	\rightarrow	?ag- <u>bas</u> -ba.sa	'be reading'
c.	/adal/	\rightarrow	?ag- <u>ad</u> -a.dal	'be studying'
d.	$/ {trabaho} /$	\rightarrow	?ag- <u>trab</u> -tra.ba.ho	'be working'
e.	$/\mathrm{da}(?)\mathrm{it}/$	\rightarrow	?ag- <u>da:</u> -da.?it	'be studying'
f.	$/\mathrm{ro}(?)\mathrm{ot}/$	\rightarrow	?ag- <u>ro:</u> -ro.?ot	'be leaving'

2.4 Position of reduplicant

1. Prefix: all the partial reduplication we've seen so far

2. Suffix: e.g. Manam (7)

 \rightarrow (though this could alternatively be analyzed as being infixed before the stressed syllable; many suffixal patterns are like this, especially those with "foot" reduplicants)

- 3. Infix: e.g. Mangarayi (8)
 - \rightarrow Many patterns involving infixation are probably characterizable as one of the next two
- 4. Variable (yet phonologically predictable): e.g. **Sanskrit** desiderative (9) oriented to the left, but can be infixed for phonotactic reasons
- 5. Adjacent to stress: e.g. Samoan (10) "prefixed" to the stressed syllable

• Manam suffixal reduplication: copies the final two moras (= bimoraic foot)

(7) Manam (Lichtenberk 1983)

salága	\rightarrow	salaga- <u>lága</u>	'be long' / 'long (sg.)'
mo.íta	\rightarrow	mo.ita <u>íta</u>	'knife' / 'cone shell'
malabóŋ	\rightarrow	malabom- <u>bóŋ</u>	'flying fox'
?ulan-	\rightarrow	?ulan- <u>láŋ</u>	'desire' / 'desirable'

- Mangarayi infixal reduplication: reduplicant infixed after initial C, copies following VC*
- (8) Mangarayi plural reduplication (McCarthy & Prince 1986:36; Merlan 1982)

	$\operatorname{Singular}$	Plural	
a.	gabuji	g- <u>ab</u> -abuji	'old person'
b.	yirag	y- <u>ir</u> -irag	'father'
с.	jimgan	j-img-imgan	'knowledgeable one'
d.	waŋgij	w- <u>ang</u> -angij	'child'
e.	${ m muygji}$	m- <u>uygj</u> -uygji	'having a dog'

- Sanskrit desiderative reduplication: CV reduplicant is
 - \circ prefixed for C-initial roots, but
 - infixed past the initial V or VC for V-initial roots for phonotactic reasons (Zukoff 2017a:§6.6.2)
- (9) Classical Sanskrit desiderative (Whitney 1885)

	Root shape	Root		Desiderative	
a.	CCV	\sqrt{t} var \sqrt{s} tamb ^h	'hasten' 'prop'	<u>ti</u> -tvar-işa- <u>ti</u> -stamb ^h -işa-	
b.	VC	√a j √īd	'drive' 'praise'	a- <u>J</u> i-J-işa- ī- <u>di</u> -d-işa-	not *aj-aj-ișa- not *īdīd-ișa-
с.	VCC	√arc √ub j √an j	'praise' 'force' 'anoint'	ar- <u>ci</u> -c-işa- ub- <u>ji</u> -j-işa- apı- <u>ji</u> -j-işa-	not *a- <u>ri</u> -rc-işa- not *u- <u>bi</u> -b j -işa- not *a- <u>ni</u> -ŋ j -işa-

• Samoan reduplication: CV reduplicant copies and precedes the stressed syllable.

- Stress is on the penultimate mora (moraic trochees from the right).
- $\circ\,$ When the word is only bimoraic, the reduplicant appears as a true prefix (10a,b).
- $\circ\,$ When the word is longer, the reduplicant ends up as an infix (10c).
- (10) Samoan reduplication (Broselow & McCarthy 1983:30)

táa	<u>ta</u> -táa	'strike'
túu	<u>tu</u> -túu	'stand'
nófo	<u>no</u> -nófo	'sit'
mó.e	<u>mo</u> -mó.e	'sleep'
alófa	a- <u>lo</u> -lófa	'love'
saváli	sa- <u>va</u> -váli	'walk'
malí.u	ma- <u>li</u> -lí.u	'die'
	táa túu nófo mó.e alófa saváli malí.u	táa ta-táa túu tu-túu nófo no-nófo mó.e mo-mó.e alófa a-lo-lófa saváli sa-va-váli malí.u ma-li-lí.u

2.5 Is the reduplicant a faithful copy of the base, or is it less marked?

• a.k.a. The Emergence of the Unmarked (TETU; McCarthy & Prince 1994a)

1. Faithful (no TETU)

- Diyari everything it copies it copies faithfully
- \circ **Ilokano** everything it copies it copies faithfully, other than vowel length alternation in forms like *?ag-<u>da</u>:-da?it* (which is not about markedness reduction)

2. Faithful but reduced (phonotactic TETU)

• Sanskrit cluster-initial roots copy without one of the consonants (9a)

3. Unfaithful due to process application (no TETU)

• **Ponapean** forms like \underline{don} -dod ($d \rightarrow n$ via independent coda condition effect)

4. Unfaithfulness due to featural TETU

• Yoruba (11) only allows the "least marked" vowel [i] in the reduplicant, regardless of base vowel:

(11) Yoruba (from Alderete et al. 1999:337)

gbóná	\rightarrow	gbí-gbóná	'be warm, hot'/'warmth, heat'
jε	\rightarrow	<u>jí</u> -jε	'eat'/'act of eating'
rí	\rightarrow	<u>rí</u> -rí	'see'/'act of seeing'

3 Analyzing Reduplicant Shape

3.1 Marantz (1982): CV templates

- Marantz (1982) was one of the first proposals designed to explain the mechanisms that determine the shape of reduplication. His approach was to employ "reduplicative templates".
 - The shape of the reduplicative morpheme was specified in underlying representation, in terms of a consonant-vowel (CV) template, i.e. a specified string of C slots and V slots.
 - \circ It then received its phonological content through copying and autosegmental association to the CV slots of that template (see also Steriade 1988).
- \rightarrow Associate leftmost segment of copy to first matching segment type; keep associating left-to-right until you run out of C/V slots.
- (12) CVC reduplication in Agta (Marantz 1982:439,487; data from Healey 1960:7)
 - a. takki 'leg' $\rightarrow \underline{tak}$ -takki 'legs'

t	a	k	k	i		t	a	k	k	i	
C	V	С			+	С	V	С	С	V	

b. ufu 'thigh' $\rightarrow uf$ -uffu 'thighs'

u	\mathbf{f}	\mathbf{f}	u		u	f	f	u	
C V	С			+	V	С	С	V	

• Levin (1983, 1985) replaces C's and V's with X's (i.e. any segment).

3.2 McCarthy & Prince (1986): Prosodic Templates

• McCarthy & Prince (1986) observe that reduplicant shape tends to be describable as something like a syllable, or a heavy syllable, or a foot. (See also Hyman 1985.)

- They proposed that reduplicant shape should be **underlyingly specified** as a member of the prosodic hierarchy, possibly with conditions on that category (e.g. binarity for feet, heaviness for syllables).
 - \circ The empty prosodic category is then filled through autosegmental association as in the prior approaches.
- (13) Prosodic Categories (McCarthy & Prince 1986:6)
 - Wd 'prosodic word'
 - F 'foot'
 - σ 'syllable'
 - σ_{μ} 'light (monomoraic) syllable'
 - $\sigma_{\mu\mu}$ 'heavy (bimoraic) syllable'
 - $\sigma_{\rm c}$ 'core syllable' [= (C)V]

• Ilokano has a heavy syllable template: $|\sigma_{\mu\mu}|$

- \rightarrow Starting from the leftmost segment of the base, copy as much as you need in order to get exactly one heavy syllable in the reduplicant (coda consonants are moraic).
- (14) Heavy σ reduplication in Ilokano (McCarthy & Prince 1986:3,10; Hayes & Abad 1989)

a.	/basa/	\rightarrow	ag- <u>bas</u> -basa	'be reading'
b.	/adal/	\rightarrow	ag- <u>ad</u> -adal	'be studying'
c.	/takder/	\rightarrow	ag- <u>tak</u> -takder	'be standing'
d.	$/ { m trabaho} /$	\rightarrow	ag- <u>trab</u> -trabaho	'be working'
e.	$/{ m da(?)it}/{ m }$	\rightarrow	ag- <u>da:</u> -da?it	'be studying'
f.	/ m ro(?) ot/	\rightarrow	ag- <u>ro:</u> -ro?ot	'be leaving'

- This analysis works perfectly for (14a,c,d).
 - $\circ\,$ The complex onset in (14d) shows why we don't want to use C/V/X slots:
 - A CVC template wouldn't fit both consonants.
 - A CCVC template would almost always go unsatisfied.
 - (14a,d) show that this condition ignores the syllabification of the base: onset consonant copied as coda.
- (14e,f) explained by fact that glottal stops can't be preconsonantal in the language.
 - Heavy syllable has to be achieved in other way: copy the vowel and lengthen it.
- * Other options not taken:
 - \circ Copy the base *i* as second member of diphthong: *[dai-da?it] not allowed because language doesn't allow (or at least doesn't like?) diphthongs.
 - \circ Copy the base (?)*i*, but don't incorporate it into the first syllable: *[da.(?)i-da?it] not allowed because it copies a second syllable. (Not copying/ epenthesizing ? would create hiatus, which is banned.)

• Copy the root-final consonant: *[rot-ro?ot] — not allowed because it copies a discontiguous string.

- Languages do allow discontiguous copying; e.g. Sanskrit TRV... roots in (9).
- This exact pattern found in a dialect of Malay Somerday (2015).
- * There's a problem with (14b) [a.g-<u>a.d</u>-a.dal], if we assume transparent syllabification.
 - Because the base is vowel initial, normal syllabification would make copied consonant an onset, and thus not make the reduplicant a heavy syllable (reduplicant would be part of two syllables).
 - To maintain analysis, you either need to posit intermediate level of structure where the copied consonant actually is a coda, or posit that surface syllabification respects morpheme boundaries.

- Manam is treated as having a bimoraic foot template:
 - If you can get a bimoraic foot by copying one syllable (where codas add a mora), do it (15c,d)
 - \circ If not, copy a second syllable (15a,b)

```
(15) Manam (Lichtenberk 1983)
```

salága	\rightarrow	salaga- <u>lága</u>	'be long' / 'long (sg.)'
moíta	\rightarrow	moita- <u>íta</u>	'knife' / 'cone shell'
malabóŋ	\rightarrow	malabom-bóŋ	'flying fox'
?ulan-	\rightarrow	?ulan-láŋ	'desire' / 'desirable'

3.3 Prosodic Template Constraints

- In OT, template form was transferred from underlying representation to constraints (McCarthy & Prince 1993b, 1994a,b, 1995, et seq.).
 - Rather than the reduplicant having specified UR, the UR is contentless: /RED/
 - A violable constraint specified the preferred reduplicant shape: for example, RED = SYLLABLE (σ), or RED = FOOT (ft)
 - Additional constraints on the shapes of syllables and feet, and other phonotactics, could then too play a direct role in determining the ultimate surface shapes of reduplicants.
- M&P usually frame RED = X as Alignment constraint (McCarthy & Prince 1993a), aligning the edges of the reduplicative morpheme to edges of prosodic constituents.
 - E.g., Manam: RED = FOOT \Rightarrow ALIGN(RED, L/R; FT, L/R) (+ FOOTBIN to ensure bimoraic foot)

3.4 Base-Reduplicant Correspondence Theory

- McCarthy & Prince (1995, 1999) couch this constraint-based approach within Base-Reduplicant Correspondence Theory (BRCT).
- In the original proposal, two models are considered: the "basic model" (16), where there are two distinct correspondence relations; and the "full model" (17), where there are three.
 - 1. The input root and the output root/base are related via Input-Output (Input-Base) correspondence.
 - 2. The output base and the output reduplicant are related via Base-Reduplicant Correspondence.
 - 3. The input root and the output reduplicant are related via Input-Reduplicant correspondence

(full model only)

(17) BRCT "Full Model" (McCarthy & Prince 1995:4)

(18) Illustration of the full model (Diyari <u>kanku</u>-kanku, Austin 1981:39)

[diagram taken from Stanton & Zukoff 2016]

- All of these correspondence relations have the same faithfulness constraints, just defined over different relations. For example, faithfulness constraints over the BR relation include:
- (19) a. **MAX-BR**:

Assign a violation * for each segment in the base without a correspondent in the reduplicant.

b. DEP-BR:

Assign a violation * for each segment in the reduplicant without a correspondent in the base. c. IDENT[F]-BR:

- Assign a violation * for each pair of segments standing in BR correspondence which differ on feature F.
- \rightarrow Base \approx Input; Reduplicant \approx Output
- Templatic constraints conflict with these (especially MAX-BR).
 - \circ If there is a constraint RED = FOOT, but the base contains more than a foot, both constraints can't be fully satisfied simultaneously.
 - \rightarrow In this approach, a templatic reduplication pattern is one where RED = X \gg MAX-BR.
 - \circ Total reduplication patterns might be thought of as systems where MAX-BR dominates all possible templatic constraints.
- ★ Some recent theories have returned to the idea of underlying templates (rather than templatic constraints) in OT-based frameworks:

• Saba Kirchner (2010, 2013) "Minimal Reduplication":

- Reduplicative morphemes have underlying representation consisting of prosodic structure not specified for segmental composition.
- No BR-correspondence, but otherwise uses parallel OT (actually Stratal OT, though you need to read carefully).
- McCarthy, Kimper, & Mullin (2012) "Serial Template Satisfaction" in Harmonic Serialism:
 - Same deal, but with Harmonic Serialism (OT with serial derivation).

3.5 Generalized Template Theory

• Selection of a particular prosodic template for reduplication in a language is not fully arbitrary:

"It is a stable empirical finding that templates imitate – up to extrametricality – the prosodic structure of the language at hand." (McCarthy & Prince 1986:4)

"The fact that the templates are bounded by a language's prosody follows from their being literally built from that prosody." (McCarthy & Prince 1986:5)

- In an ideal world, we could **derive** the nature of the template from **independent** constraints or other independent facts about the grammar.
 - \rightarrow This line of research is commonly referred to as "Generalized Template Theory" (GTT).
- But this usually got implemented in kind of a weird way (see McCarthy & Prince 1994a,b, 1995, Urbanczyk 1996, 2001):
 - You define the reduplicative morpheme as a particular class of morpheme: affix, root, stem
 - You define a size condition on that class of morphemes: e.g. AFFIX $\leq \sigma$, STEM = PRWD
 - Syllable-sized reduplicants are affixes (i.e. $\text{RED} = \sigma$ is really just $\text{AFFIX} \leq \sigma$)
 - Foot-sized reduplicants are stems: RED = FOOT is really just STEM = PRWD, and prosodic words must have a head foot
- This approach transfers phonological stipulation to morphological stipulation (or generalization, if you prefer).

3.6 The A-templatic Approach

- A stronger version of GTT is "a-templatic" reduplication (Spaelti 1997, Gafos 1998, Hendricks 1999, Riggle 2006, *a.o.*):
 - \star There are no templatic constraints or templatic URs.
 - * Reduplicant shape is determined solely through the interaction of independently necessary constraints (mainly markedness constraints).
 - * Partial reduplication is inherently minimal, subject to extension by other constraints.
- In this approach, there are essentially two types of reduplication, determined by the relative ranking of two constraints:
- (20) a. Total reduplication: $MAX-BR \gg size \ restrictor$ b. Partial reduplication: $size \ restrictor \gg MAX-BR$
- "Size restrictors" / "size minimizers" are constraints (of various sorts) that, in effect, penalize the *presence* of material in the reduplicant.
- (21) Some proposed size restrictor constraints
 - a. *STRUC(TURE)-SEG/ σ (Riggle 2006; cf. Zoll 1994)
 - b. ALL-FEET/ σ -L/R (McCarthy & Prince 1994b, Spaelti 1997, *a.o.*)
 - c. ALIGN-ROOT-L/R (Hendricks 1999, Zukoff 2017a,b, a.o.; cf. Riggle 2006)
 - d. INTEGRITY-IO (Spaelti 1997; cf. Riggle 2006, Saba Kirchner 2010, 2013)
 - e. Dep(Seg)-BD/OO (Gouskova 2004)
- When MAX-BR outranks all size restrictors (20a), you copy everything.
- When a size restrictor outranks MAX-BR (20b), you copy as little as possible.

- The fact that not all partial reduplication patterns are minimal (\approx CV) results from other constraints that penalize the minimal shape outranking the size restrictor in ranking (20b).
 - i.e., extension to a longer reduplicant can only be motivated by the presence of higher-ranked conflicting constraints: e.g. prosodic constraints like *CLASH, segmental phonotactics like OCP.
 - $\circ~$ The diversity of partial reduplication patterns is due to the diversity of possible conflicting constraints, and their interactions.

* Put another way: reduplicant shape is determined primarily by TETU.

3.7 A sketch analysis of a-templatic reduplication in Gothic

- Gothic (Zukoff 2017a:Ch. 4) represents a clear case of minimal reduplication, with conditional extension.
 - $\circ\,$ It has prefixal partial reduplication which is by default CV.
 - When a particular phonotactic constraint would be violated by CV, it exhibits a longer reduplicant (namely, CCV).
- For roots beginning in consonant+vowel (C₁V), the reduplicant is C₁ ε -.
- For roots beginning in consonant+sonorant+vowel (C_1R_2V), the reduplicant is also $C_1\varepsilon$ (22a).
- But, for roots beginning in consonant + obstruent + vowel (C₁T₂V), the red. is extended to C₁T₂ ϵ (22b).

(22)	Cluster-initial reduplicated form in Gothic	(Lambdin 2006:115)
------	---	--------------------

			Present $(1sg)$		Preterite	(1sg)
a.	CRV roots	'tempt' 'sleep' 'bewail' 'weep'	fraisa slepa floka greta	[frɛːs-a] [sleːp-a] [floːk-a] [greːt-a]	faifrais saislep faiflok gaigrot	[<u>fɛ</u> -frɛ:s] [<u>sɛ</u> -sle:p] [<u>fɛ</u> -flo:k] [<u>gɛ</u> -gro:t]
b.	CTV roots	ʻpossess' ʻdivide'	stalda skaida	[stald-a] [skɛːð-a]	staistald skaiskaiþ	$[\underline{st\epsilon}-\underline{stald}] (not \ *[\underline{s\epsilon}-\underline{stald}])$ $[\underline{sk\epsilon}-\underline{sk\epsilon}:\theta] (not \ *[\underline{s\epsilon}-\underline{sk\epsilon}:\theta])$

• This is clearly a partial reduplication pattern, since not everything is copied. This means we need the ranking schema *size restrictor* \gg MAX-BR (20b).

• I'll use Align-Root-L as the size restrictor:

(23) **ALIGN-ROOT-L:** Assign one violation * for each segment intervening between the left edge of the root and the left edge of the word.

• Under certain approaches to morpheme ordering / linearization, ALIGNMENT constraints of this sort are independently necessary to determine the relative order of morphemes in a word (McCarthy & Prince 1993a, Zukoff 2022).

• This ranking fragment alone will select desired candidate (24a) over (24b,c), because it has fewer segments in the reduplicant (2 vs. 3,4).

/RED, flo:k/	Anchor-L-BR	Align-Root-L	Max-BR	Contiguity-BR	
a. $\mathbf{E} = \underline{\mathbf{f}_i \mathbf{e}_k} - \mathbf{f_i lot}_k \mathbf{k}_l$		**	**	*	
b. $f_i l_j \varepsilon_k - f_i l_j o t_k k_l$		***i	*	1	
c. $\underline{\mathbf{f}_i \mathbf{l}_j \boldsymbol{\varepsilon}_k \mathbf{k}_l} - \mathbf{f}_i \mathbf{l}_j \mathbf{O}_k \mathbf{k}_l$		***!*		1	
d. $\underline{\varepsilon_k}$ -flo: _k k _l	*!	*	***	I	
e. $l_j \varepsilon_k$ -fl_j ot_k k_l	*!	**	**	1	

(24) CV reduplicants for #CR clusters: $\sqrt{flork} \rightarrow f\epsilon \text{-flork}$ 'he wept'

- To ensure that (24a) wins over (24d,e), we need the BR-faithfulness constraint ANCHOR-L-BR to outrank ALIGN-ROOT-L (and also another BR-faithfulness constraint CONTIGUITY-BR).
- (25) a. **ANCHOR-L-BR:** Assign one violation * if the segment at the left edge of the reduplicant does not stand in BR correspondence with the segment at the left edge of the base.
 - b. **CONTIGUITY-BR:** Assign one violation * for each pair of adjacent segments in the reduplicant which are not adjacent in the base.
- With respect to ALIGN-ROOT-L, (24a) fares worse than (24d) and identically to (24e).
- \rightarrow So we know that a constraint(s) that penalize (24d) & (24e) worse than (24a) must outrank ALIGN-ROOT-L.
 - Both (24d) & (24e) violate ANCHOR-L-BR, because the leftmost segment of the reduplicant does not match the leftmost segment of the base.
- (24a) avoid the ANCHOR-L-BR violation while still copying (almost) minimally by skipping the second base consonant, which incurs a CONTIGUITY-BR violation.
 - As long as ANCHOR-L-BR \gg CONTIGUITY-BR, we derive the right result.
 - ALIGN-ROOT-L must also dominate CONTIGUITY-BR, so that (24a) can still win over (24b), which avoids the CONTIGUITY-BR violation at the expense of copying an extra segment.
- The basic case thus illustrates minimal copying subject to higher ranked constraints (here, ANCHOR-L-BR).
- In #CTV roots, non-minimal copying is motivated by a phonotactic constraint against particular types of consonant repetitions:
- (26) $*C_{\alpha}VC_{\alpha} / _C_{[-\text{sonorant}]}$:

For each sequence of repeated identical consonants separated by a vowel $(C_{\alpha}VC_{\alpha})$, assign a violation * if that sequence immediately precedes an obstruent.

• I call this constraint "No Poorly-Cued Repetitions (*PCR)" in Zukoff (2017a), where I argue that it has phonetic underpinnings.

• This constraint is crucial for explaining a variety of similar effects in the reduplication patterns of a number of ancient Indo-European languages, and elsewhere.

- The context for this constraint is met only by the minimal copying candidate for #CTV roots, not #CV or #CRV roots.
- \Rightarrow Therefore, diversion away from the basic pattern (27a) is called for only for #CTV roots.
 - The ranking ANCHOR-L-BR \gg ALIGN-ROOT-L, which was independently established for the #CRV roots, means that the optimal alternative is (27b), which copies an extra segment.

	1 11	. V	1		
/RED, s	$\operatorname{stald}/$	Anchor-L-BR	$*C_{\alpha}VC_{\alpha} / _C_{[-son]}$	Align-Root-L	Max-BR
a.	$\underline{\mathbf{s}_i \boldsymbol{\varepsilon}_k} \textbf{-} \mathbf{s}_i \mathbf{t} \mathbf{a}_k \mathbf{l} \mathbf{d}$		*!	**	***
b. 🖙	$s_i t_j \varepsilon_k - s_i t_j a_k ld$		 	***	**
c.	$t_j \epsilon_k$ -s $t_j a_k ld$	*!		**	***

(27) CCV reduplicants for #CT clusters: $\sqrt{stald} \rightarrow stestald$ 'he possessed'

(28) Total ranking:

Anchor-L-BR, $C_{\alpha}VC_{\alpha} / C_{[-son]} \gg Align-Root-L \gg Max-BR$, Contiguity-BR

- *** Moral of the story:** Partial reduplication is minimal, unless high ranking constraints interfere with satisfaction of the size restrictor constraint.
- Next time we'll see how prosodic constraints can also induce extra copying and explain certain effects formerly attributed to "prosodic templates".

References

- Alderete, John, Jill Beckman, Laura Benua, Amalia Gnanadesikan, John McCarthy & Suzanne Urbanczyk. 1999. Reduplication with Fixed Segmentism. Linguistic Inquiry 30(3):327-364.
- Austin, Peter K. 1981. A Grammar of Diyari, South Australia. Cambridge: Cambridge University Press.
- Broselow, Ellen & John McCarthy. 1983. A Theory of Internal Reduplication. The Linguistics Review 3:25-88.

Cohn, Abigail C. 1989. Stress in Indonesian and Bracketing Paradoxes. Natural Language & Linguistic Theory 7(2):167-216.

Dudas, Karen Marie. 1976. The Phonology and Morphology of Modern Javanese. PhD Dissertation, University of Illinois, Urbana-Champaign.

Gafos, Diamandis. 1998. A-templatic Reduplication. Linquistic Inquiry 29(3):515-527. doi:10.1162/002438998553851.

Gouskova, Maria. 2004. Minimal Reduplication as a Paradigm Uniformity Effect. In Vinceta Chand, Ann Kelleher, Angelo J. Rodríguez & Benjamin Schmeiser (eds.), The Proceedings of the 23rd West Coast Conference on Formal Linguistics, 265-278. Somerville, MA: Cascadilla Press.

Hayes, Bruce & May Abad. 1989. Reduplication and Syllabification in Ilokano. Lingua. International review of general linguistics. Revue internationale de linguistique générale 77(3-4):331-374.

Healey, Phyllis M. 1960. An Agta Grammar. Manila: Summer Institute of Linguistics, Philippine Branch.

Hendricks, Sean Q. 1999. Reduplication without Template Constraints: A Study in Bare-Consonant Reduplication. PhD Dissertation, University of Arizona.

Hyman, Larry M. 1985. A Theory of Phonological Weight. Dordrecht, Holland: Foris Publications.

- Inkelas, Sharon & Cheryl Zoll. 2005. Reduplication: Doubling in Morphology. Cambridge, UK: Cambridge University Press. Kennedy, Robert. 2002. A Stress-Based Approach to Ponapean Reduplication. In Gina Garding & Mimu Tsujimura (eds.), Proceedings of the 21st West Coast Conference on Formal Linguistics, 222-235. Somerville, MA: Cascadilla Press.

Kenstowicz, Michael. 1995. Cyclic vs. Non-Cyclic Constraint Evaluation. Phonology 12(3):397-436.

Lambdin, Thomas O. 2006. An Introduction to the Gothic Language. Eugene, Oregon: Wipf & Stock Publishers.

Levin, Juliette. 1983. Reduplication and Prosodic Structure. Ms., MIT. ———. 1985. A Metrical Theory of Syllabicity. PhD Dissertation, MIT.

Lichtenberk, Frantisek. 1983. A Grammar of Manam (Oceanic Linguistics Special Publications 18). Honolulu: University of Hawai'i Press.

Marantz, Alec. 1982. Re Reduplication. Linguistic Inquiry 13(3):435-482.

McCarthy, John J. & Abigail Cohn. 1998. Alignment and Parallelism in Indonesian phonology. Linguistics Department Faculty Publication Series 6.

McCarthy, John J., Wendell Kimper & Kevin Mullin. 2012. Reduplication in Harmonic Serialism. Morphology 22(2):173-232.

McCarthy, John J. & Alan Prince. 1986. Prosodic Morphology. Linguistics Department Faculty Publication Series 13 (1996 version). 1993a. Generalized Alignment. In Geert Booij & Jaap van Marle (eds.), Yearbook of Morphology 1993, 79-153. Kluwer. doi:10.1007/978-94-017-3712-8_4

. 1993b. Prosodic Morphology I: Constraint Interaction and Satisfaction. Linguistics Department Faculty Publication Series 14 (2001 version).

. 1994a. The Emergence of the Unmarked: Optimality in Prosodic Morphology. In Merce Gonzalez (ed.), NELS 24: Proceedings of the North East Linguistic Society, 333-379. Amherst, MA: Graduate Linguistics Student Association.

-. 1994b. Two Lectures on Prosodic Morphology .

-. 1995. Faithfulness and Reduplicative Identity. In Jill Beckman, Suzanne Urbanczyk & Laura Walsh Dickey (eds.), Papers in Optimality Theory (University of Massachusetts Occasional Papers in Linguistics 18), 249-384. Amherst, MA: Graduate Linguistics Student Association.

. 1999. Faithfulness and Identity in Prosodic Morphology. In René Kager, Harry van der Hulst & Wim Zonneveld (eds.), The Prosody-Morphology Interface, 218-309. Cambridge: Cambridge University Press.

Merlan, Francesca. 1982. Mangarayi (Lingua Descriptive Series 4). Amsterdam: North-Holland.

Riggle, Jason. 2006. Infixing Reduplication in Pima and its Theoretical Consequences. Natural Language & Linguistic Theory 24(3):857-891. doi:10.1007/s11049-006-9003-8.

Saba Kirchner, Jesse. 2010. Minimal Reduplication. PhD Dissertation, University of California, Santa Cruz.

-. 2013. Minimal Reduplication and Reduplicative Exponence. Morphology 23(2):227-243. doi:10.1007/s11525-013-9225-5.

Somerday, Megan. 2015. (Some) Partial Reduplication is Full Reduplication. In Thuy Bui & Deniz Özyıldız (eds.), NELS 45: Proceedings of the Forty-Fifth Annual Meeting of the North East Linguistic Society, vol. 2, 79-92. Amherst, MA: Graduate Linguistics Student Association.

Spaelti, Philip. 1997. Dimensions of Variation in Multi-Pattern Reduplication. PhD Dissertation, University of California, Santa Cruz. Stanton, Juliet & Sam Zukoff. 2016. Prosodic Identity in Copy Epenthesis and Reduplication: Towards a Unified Model of Transitive Correspondence. Ms., MIT. https://www.samzukoff.com/stantonzukoffms. Steriade, Donca. 1988. Reduplication and Syllable Transfer in Sanskrit and Elsewhere. *Phonology* 5(1):73-155.

Urbanczyk, Suzanne. 1996. Morphological Templates in Reduplication. In Kiyomi Kusumoto (ed.), NELS 26: Proceedings of the North East Linguistic Society, 425-440. Amherst, MA: Graduate Linguistics Student Association.

. 2001. Patterns of Reduplication in Lushootseed. New York & London: Garland Publishing. Whitney, William Dwight. 1885. The Roots, Verb-Forms, and Primary Derivatives of the Sanskrit Language: A Supplement to his Sanskrit Grammar. New Haven: American Oriental Society.

Zoll, Cheryl. 1994. Subsegmental Parsing: Floating Features in Chaha and Yawelmani. In Jason Merchant, Jaye Padgett & Rachel Walker (eds.), Phonology at Santa Cruz, Volume 3.

Zukoff, Sam. 2017a. Indo-European Reduplication: Synchrony, Diachrony, and Theory. PhD Dissertation, MIT. https://www.samzukoff. com/zukoffdiss

. 2017b. The Reduplicative System of Ancient Greek and a New Analysis of Attic Reduplication. Linguistic Inquiry 48(3):459-497. doi:10.1162/ling_a_00250.

2022. The Mirror Alignment Principle: Morpheme Ordering at the Morphosyntax-Phonology Interface. Natural Language & Linguistic Theory. doi:10.1007/s11049-022-09537-2.