AMP 2023 • Johns Hopkins University • October 20-22, 2023

1. INTRODUCTION

- Most contemporary theories derive morpheme order through some version of cyclic concatenation
(1) Cyclic Concatenation: [[[Root $] \mathrm{X}] \mathrm{Y}] \xrightarrow{\text { Step } \mathbf{1}}[[$ Root- $X] \mathrm{Y}] \xrightarrow{\text { Step } \mathbf{2}}[$ Root- $X-Y]$
- Claim: Cyclic concatenation is not a sufficient model of morpheme order.
- Evidence: Two asymmetries involving variation relating to Chichewa's "CARP template" (Hyman 2003).

2. CARP TEMPLATE AND Asymmetric Compositionality

- Bantu "verbal extensions" prefer an arbitrarily specified order (2) (Hyman \& Mchombo 1992, Hyman 2003):
(2) "CARP Template": [ROOT <] CAUSATIVE < APPLICATIVE < RECIPROCAL < PASSIVE
- Chichewa allows both syntactic/semantic combinations of Causative and Reciprocal (Hyman 2003:247ff.).
- Both surface with the cyclic order (3a,b) (cf. Baker 1985's "Mirror Principle").
- If the cyclic order violates CARP (3b), that structure can also surface in the CARP order (3c)
(3) a. Reciprocalized Causative (cyclic order = CARP order)

$$
[[[\sqrt{ } \text { TIE }] \text { CAUS }] \text { REC }] \xrightarrow{\text { Step } 1}[[\text { mang-its }] \text { REC }] \xrightarrow{\text { Step } 2}[\text { mang-its-an }]\left(' \mathrm{X}_{i} \text { cause e.o. } i \text { to tie } \mathrm{Y}\right. \text { ') }
$$

b. Causativized Reciprocal (cyclic order)
$[[[\sqrt{ }$ TIE $]$ REC $]$ CAUS $] \xrightarrow{\text { Step } 1}[[$ mang-an $]$ CAUS $] \xrightarrow{\text { Step } 2}$ [mang-an-its $]\left(' X\right.$ cause Y_{i} to tie e.o. i ')
c. Causativized Reciprocal (anti-cyclic CARP order): [mang-its-an] ('X cause Y_{i} to tie e.o. ${ }_{i}$)

- Hyman (2003) calls this "asymmetric compositionality"
\rightarrow The anti-cyclic CARP order (3c) cannot be derived through cyclic concatenation

3. Proposal: Order through Base-Deriv. Correspondence

\star Order is derived in parallel via constraint interaction.

1. Cyclic order via Base-Derivative faithfulness (Benua 1997)
[CNTG-BD \gg CAUS-REC]

- CNTG-BD (4) prefers the order of the base. (Base = morphosyntactic subconstituent of derivative)

2. CARP order via "bigram morphotactic constraints" (Ryan 2010)
[CAUS-REC \gg CNTG-BD]

- CaUs-REC (5) prefers implementation of the template.
(4) CNTG-BD: One * for each pair of adjacent base segments that aren't adjacent in the derivative.
(5) Caus-REC: One * if exponents of Caus and Rec are present but not in that order
- Variable ranking between CNTG-BD and CAUS-REC derives asymmetric compositionality:

6)

	CNTG-BD \gg CAUS-REC		
	$\frac{\text { BASE: }[[\mathrm{Rt}] \text { Caus }]}{\text { InPuT: }[[\mathrm{RRt]}] \text { Caus }] \text { Rec }]}$	Cntg-bD	Caus-Rec
	a. Rt-Caus-Rec (3a)		
	Rt-Rec-Caus	*!	*
$\mid \underset{\underline{\underline{x}}}{ }$	$\begin{aligned} & \text { BASE: }[[\text { Rt }] \text { Rec }] \\ & \text { INPUT: }[[[R \mathrm{R}] \text { Rec]Caus }] \end{aligned}$	Cntg-bD	Caus-Rec
$\vec{\square}$	a. \quad Rt-Caus-Rec	*!	
-	b. Rt-Rec-Caus (3b)		*

CAUS-REC \gg CNTG-BD		
$\begin{aligned} & \hline \text { BASE: [[Rt]Caus] } \\ & \hline \text { InPUT: }[[[\mathrm{Rt}] \mathrm{Caus}] \text { Rec }] \end{aligned}$	Caus-Rec	Cntg-bD
a. Rt-Caus-Rec (3a)		
Rt-Rec-Caus	*!	*
BASE: [[Rt]Rec]	Caus-Rec	Cntg-BD
InPut: [[[Rt]Rec]Caus]		
a. Rt-Caus-Rec (3c)		*
b. Rt-Rec-Caus	*!	

\rightarrow This model allows for variation and non-cyclic ordering, because the drive for "cyclicity" (CNTG-BD) is violable. Not replicable with cyclic concatenation.
\star For each pattern, one or both variants cannot be derived using cyclic concatenation.
\rightarrow Proposal: Morpheme order calculated in parallel by constraint interaction involving violable Base-Derivative (BD) Faithfulness constraints (Benua 1997), esp. CONTIGUITY-BD (McCarthy \& Prince 1995).

- The analysis also may let us make a testable prediction about the relative frequency of variants.

4. Asymmetric Suffix Doubling

- Both structural combinations of Applicative and Reciprocal require the CARP order (7, 8a).
- Just in case the cyclic order would violate CARP (8b), a doubling order (8c) is permitted.
(7) Reciprocalized Applicative: [[[$\sqrt{ }$ TIE $]$ APPL $]$ REC] 'tie for each other' [mang-il-an-] (CARP order = cyclic order)
(8) Applicativized Reciprocal: [[[$\sqrt{ }$ TIE $]$ REC $]$ ApPL] 'tie each other for'
a. [mang-il-an] \checkmark CARP order
b. *[mang-an-il] X Cyclic order
(Hyman \& Mchombo 1992:351ff.,
c. [mang-an-il-an] \checkmark Doubling order (Root-Rec-Appl-Rec)

Doubling in (8c) is driven by CNTG-BD.

- Appl-REC (9) (undominated) eliminates the cyclic order (12b).
- Variable ranking btw. CnTg-BD (4) and Integrity-IO (10) ("Don't double!") derives variability: - Integ-IO \gg CNTG-BD: CARP order (12a); CNTG-BD \gg Integ-IO: Doubling order (12d)
(9) APPL-REC: One * if exponents of Appl and Rec are present but not in that order.
(10) INTEG-IO: One * for each input segment with multiple output correspondents.
(11)

$\begin{aligned} & \hline \text { BASE: }[[\mathrm{Rt}] \mathrm{Appl}] \\ & \hline \text { InPUT: }[[[\mathrm{Rt}] \mathrm{Appl}] \mathrm{Rec}](7) \end{aligned}$	A-R	Intg	Cntg
a. Rt-Appl-Rec			
b. Rt-Rec-Appl	*!		*
c. Rt-Appl-Rec-Appl		*!	
d. Rt-Rec-Appl-Rec		*!	*!

(12)

$\begin{aligned} & \hline \text { BASE: }[[\mathrm{Rt}] \mathrm{Rec}] \\ & \hline \text { InPUT: }[[[\mathrm{Rt}] \mathrm{Rec}] \mathrm{Appl}](8) \end{aligned}$	A-R	Intg । Cntg	
a. Rt-Appl-Rec (8a)			*
b. Rt-Rec-Appl (8b)	*!		
c. Rt-Appl-Rec-Appl			*!
d. Rt-Rec-Appl-Rec (8c)		*	

5. FREQUENCY OF VARIANTS

Consequence of analysis:	Incorrect prediction:	Potential solution:
1. CAUS-REC \sim CNTG-BD	- Causativized Reciprocal (3b/c)	• Frequencies aren't 50/50.
2. CNTG-BD \sim INTG-IO	should permit suffix doubling	• Analysis using MaxEnt HG.
\hookrightarrow CAUS-REC \sim INTG-IO	output *Rt-Rec-Caus-Rec.	\rightarrow Reverse engineer frequencies?

6. Conclusion

- These interactions demonstrate that cyclic concatenation is not a sufficient model of morpheme order.
- Parallel model using violable constraints - CNTG-BD, Integ-IO, and bigrams - generates principled deviations from cyclic ordering while still generating the cyclic order under just the right circumstances.
- It allows for an analysis of variation that may reverse engineer testable predictions about frequency.
A handout with references and additional material is available at: https://www.samzukoff.com/amp2023poster

