Class 28 Selkup recap

4/27/2022

- Last time, we looked at the stress system of Selkup:
- (1) Selkup (Finno-Ugric, Russia)

a.	ur.cór.mɨt	[010]	[HÍL]	'we work'
b.	qu.moː.ql1.líː	[0001]	[LHLH]	'your two friends'
c.	py.na.ki.sź	[0001]	[LLLH]	'giant!'
d.	qól ^j .cɨm.pa.tɨ	[1000]	[LLLL]	'found'

• The generalizations were as follows:

- (2) a. There is exactly one stress per word.
 - b. If there's one heavy syllable in a word, that syllable gets stressed.
 - c. If there are multiple heavy syllables in a word, the rightmost one gets stressed.
 - d. If there are no heavy syllables in a word, the leftmost syllable gets stressed.
 - e. Lapses are fine, final syllable stress is fine.
- The crucial new ingredient is the constraint CULMINATIVITY(max), which enforces generalization (1a):
- (3) CULMINATIVITY (maximum): Assign one violation if there is more than one stress in a word.
- This requires us to refine the version of CULMINATIVITY we used to explain why one-syllable words in Warao are stressed, even though the language otherwise doesn't allow stressed final syllables:
- (4) **CULMINATIVITY**(minimum): Assign one violation if there is less than one stress in a word.
- We can fill out the analysis by looking at /LHLH/ words (like (1b)) and /LLL/ words (which are extrapolated by me, based on /LLLL/ words like (1d)).

/LI	$\mathbf{HLH}_{/}$	/	Culm(max)	WSP	STRESSL	ALIGN-PS-R	*LAPSE
	a.	LHLH		**!	*		***
ß	b.	LHLÍ		*	*		**
	с.	LÌLLÍ	*!		*		
	d.	ĹHLH		**!		***	**
	e.	LÍLH		*	*	*i*	*

(5) Selkup LHLH words

(6) Selkup LLL words

/LHLH/		Culm(max)	WSP	STRESSL	ALIGN-PS-R	*Lapse
a	. LLL			*!		**
ng p	. ĹLL				**	*
c	. LĹL			*!	*	
d	. LLĹ			*!		*

- (7) Ranking arguments:
 - a. $CULM(max) \gg WSP$ because (5b) \succ (5c)
 - b. WSP \gg STRESSL because (5b) \succ (5d)
 - c. STRESSL \gg ALIGN-PS-R because (6b) \succ (6d)
 - d. ALIGN-PS-R \gg *LAPSE because (5b) \succ (5e)
- This analysis requires that the alignment constraint counts **all syllables** (as in (8)) and not just **stressed syllables**. If it counted just stressed syllables, then there would be no difference between (5b) and (5e). This lead the grammar to wrongly let *LAPSE pick (5e) as the winner.
- (8) **ALIGN-PRIMARYSTRESS-RIGHT:** Assign one violation for each syllable between the primary stress and the right edge of the word.
- Since every single ranking pair is crucial, we can accurately represent the total ranking without a Hasse diagram:
- (9) **Ranking:** $CULM(max) \gg WSP \gg STRESSL \gg ALIGN-PS-R \gg *LAPSE$
- Compare what the Hasse diagram would look like:
- (10) Hasse diagram for Selkup

CULM(max) | WSP | STRESSL | ALIGN-PS-R | *LAPSE