# Class 4 Axininca Campa continued

10/5/17

#### 1 Stress

#### 1.1 Data

- Basic pattern: "left-to-right iambs" = stress on even numbered syllables counting from the left
- (1) Basic Stress Data (odd syllable parity words)

(McCarthy & Prince 1993:159; taken from Payne, Payne, & Santos 1982)

hinóki 'arriba (por el río)'
ič<sup>h</sup>ìkakína 'él me ha cortado'
iráawanàti 'su caoba'
apàniróini 'solo'
añàawáitirìka 'cuando hablamos con él'

- Not sensitive to morphological constituency
- → If foot structure is built up at the "suffix level", it is eliminated ("deforestation"; Liberman & Prince 1977) and recalculated at the word level (M&P Appendix A.1).
  - · This on its own is reason to be skeptical of M&P's analysis.
- The final syllable (really, mora) can't be stressed. In even parity words, this variably leads to:
  - · a final lapse, or
  - · a secondary stress on the penult which results in a clash with the antepenult
- (2) Final Stresslessness (p. 160)

kimítaka  $\sim$  kimítàka 'quizá' hotítana  $\sim$  hotítàna ''el me metió' irániri 'su cuñado' č<sup>h</sup>óokiro 'hormiga de árbol' c<sup>h</sup>irìnitakòiyanáakani 'la noche les sobrevino'

- In disyllabic words, this leads to stress on the first syllable, even though that is usually disallowed.
- (3) Initial stress in disyllables (p. 160)

círi 'brea de árbol' máto 'polilla' c<sup>h</sup>ími 'colpa'

- Heavy syllables are always stressed (undominated WSP)
  - · Can cause a clash (by syllable) when there are two adjacent heavy syllables
  - · Can cause initial lapses when the third syllable is heavy and the first two are light
- (4) Heavy syllables in odd numbered syllables always stressed (data from Spring 1990:65, citing Payne, Payne, & Santos 1982)

máinawo 'senorita'
máawoni 'to all, every'
íiriki 'green, unripe'
nowawàitáiyani 'we have continued eating'

- Final diphthongs are stressed
- (5) Final Diphthongs (M&P 164)

kitìšitàkotái 'la mañana les sobrevino' àatái 'iremos'

- No final long vowels, except in monosyllables
- (6) Final long vowels in monosyllables (M&P 164)

míi 'otter' sóo 'sloth' šáa 'anteater'

- Underlying long vowels shortened in final position (even if it leads to initial stress)
- (7) Final Shortness (stress marks inferred) (p. 165)

| UR                  | Noun               | 'my' + Noun                 |                    |
|---------------------|--------------------|-----------------------------|--------------------|
| /sampaa/            | sáwo               | no-sampáa-ti<br>no-sawóo-ti | 'balsa' 'case'     |
| /c"imii/<br>Compare | c <sup>n</sup> ími | no-c <sup>h</sup> imíi-ti   | 'ant'              |
| /sima/<br>/čokori/  | síma<br>čokóri     | no-simá-ni<br>no-čokóri-ti  | 'fish' 'armadillo' |

## 1.2 Foot-free analysis

- Left-to-right alternating by syllable, starting on second syllable:
- (8) a. **NONINITIALITY**: Assign a violation if the initial syllable(?)/mora(?) is stressed.
  - b. **NONFINALITY**: Assign a violation if the final syllable(?)/mora(?) is stressed.
  - c. \*CLASH: Assign a violation for each pair of adjacent stressed syllables(?)/moras(?).

- d. \*LAPSE: Assign a violation for each pair of adjacent unstressed syllables(?)/moras(?).
- In odd syllable parity words (with no heavy syllables in odd numbered syllables), all of these constraints can be satisfied fully.
- (9) Odd syllable parity words, no heavy syllables

| /ič <sup>h</sup> | ikakina/                  | NonInitiality | NonFinality | *CLASH | *LAPSE |
|------------------|---------------------------|---------------|-------------|--------|--------|
| a.               | ☞ ič <sup>h</sup> ìkakína |               | l           |        |        |
| b.               | ìč <sup>h</sup> ikàkiná   | *!            | *!          |        |        |
| c.               | ìč <sup>h</sup> ikákina   | *!            | <br>        |        | *!     |
| d.               | ìč <sup>h</sup> ikàkína   | *!            |             | *!     |        |
| e.               | ìč <sup>h</sup> ikakína   | *!            |             |        | *!     |

- All words must bear a stress
- (10) **CULMINATIVITY**: Assign a violation if a word has no stress.
- NONFINALITY >> NONINITIALITY forces initial stress in disyllables.
- (11) Disyllables

| /ma | ato/ |      | CULMINATIVITY | NonFinality | NonInitiality | *CLASH | *LAPSE |
|-----|------|------|---------------|-------------|---------------|--------|--------|
| a.  | rg - | máto |               |             | *             |        |        |
| b.  |      | mato | *!            |             |               |        | *      |
| c.  |      | mató |               | *!          |               |        |        |
| d.  |      | màtó |               | *!          | *             | *      |        |

- (12) Crucial ranking: CULMINATIVITY, NONFINALITY >> NONINITIALITY
- Variable behavior in the penult of even parity words.
  - · Variable ranking between \*CLASH and \*LAPSER
  - · Can't be regular \*LAPSE because we don't see same variation in word-internal position
  - · \*LAPSEL must outrank (at least) \*LAPSER to ensure position of lapse
- (13) a. \*LAPSER: Assign a violation if the final two syllables(?)/moras(?) are unstressed.
  - b. \*LAPSEL: Assign a violation if the first two syllables(?)/moras(?) are unstressed.
- (14) Even syllable parity words, no heavy syllables

| /kir | /kimitaka/ |          | NonFin | NonInit | *LAPSEL | *CLASH | *LAPSER | *Lapse |
|------|------------|----------|--------|---------|---------|--------|---------|--------|
| a.   | 曖          | kimítaka |        |         |         |        | *       | *      |
| b.   | rg         | kimítàka |        |         |         | *      |         |        |
| c.   |            | kimìtaká | *!     |         |         |        |         |        |
| d.   |            | kìmitáka |        | *!      |         |        |         |        |
| e.   |            | kimitáka |        |         | *!      |        |         | *      |

- Most forms are given without the stress clash; I will assume that that is default behavior.
  - This means \*CLASH  $\gg$  \*LAPSER
  - · Makes no difference to rest of the analysis. I now omit \*LAPSER.
- (15) Crucial ranking (assuming default treatment is lapse at end):
  - a. NonFinality, NonInitiality, \*Clash ≫ \*Lapse
  - b.  $*LAPSEL \gg *LAPSER$
- Words get initial stress if initial syllable is heavy, in violation of NonInitiality.
- (16) **WSP**: Assign a violation for each heavy syllable which is not stressed.
- (17) Initial heavy syllables

| /ma | /maawoni/ |    | NonFinality | NonInitiality | *CLASH | *LAPSE |
|-----|-----------|----|-------------|---------------|--------|--------|
| a.  | ™ máawoni |    |             | *             |        | *      |
| b.  | maawóni   | *! |             |               |        |        |
| c.  | máawonì   |    | *!          | *             |        |        |
| d.  | máawòni   |    | <br>        | *             | *!     |        |

- (18) Crucial ranking: WSP >> NONINITIALITY, \*CLASH, \*LAPSE
- WSP can cause a clash when there are two adjacent heavy syllables.
- WSP can cause a lapse even at the left edge when there is a heavy syllable in an odd numbered syllable, e.g. 3rd syll preceded by two lights.
- (19) Heavy 3rd syll / adjacent heavy syllables

|     | iou, y eta eyir, augustic ilea, y eyinaetee |     |               |        |         |        |  |  |
|-----|---------------------------------------------|-----|---------------|--------|---------|--------|--|--|
| /nc | wawaitaiyani/                               | WSP | NonInitiality | *CLASH | *LAPSEL | *LAPSE |  |  |
| a.  | nowawaitaiyani                              |     |               | *      | *       | **     |  |  |
| b.  | nòwawàitáiyani                              |     | *!            |        |         | *      |  |  |
| c.  | nowàwaitáiyani                              | *!  |               |        |         | *      |  |  |
| d.  | nowàwàitáiyani                              |     |               | **!    |         | *      |  |  |

- (20) Crucial ranking: WSP ≫ \*CLASH ≫ \*LAPSEL
- The same interactions correctly predict medial lapses under certain configurations with a heavy syllable in an odd numbered syllable
  - · Position of lapse requires \*LAPSEL
  - · \*LAPSEL must be ranked below NONINITIALITY and WSP these rankings follow from transitivity through \*CLASH.

(21) Medial lapses

| /chirinitakoiyanaakani/                       | WSP | NonInitiality | *CLASH | *LAPSE | *LAPSEL |
|-----------------------------------------------|-----|---------------|--------|--------|---------|
| a. 🖙 <b>c<sup>h</sup>irìnitakòi</b> yanáakani |     |               |        | **     |         |
| b. <b>c<sup>h</sup>irinìtakòi</b> yanáakani   |     |               |        | **     | *!      |
| c. <b>c<sup>h</sup>ìrinìtakòi</b> yanáakani   |     | *!            |        | *      |         |
| d. <b>c<sup>h</sup>irìnitàkòi</b> yanáakani   |     |               | *!     | *      |         |
| e. <b>c<sup>h</sup>irìnitàkoi</b> yànaakáni   | *!* |               |        |        |         |

- Final diphthongs are stressed.
  - · If NonFinality is defined over syllables, then WSP ≫ NonFinality
  - · I'll argue below that it isn't; it's defined over moras.

(22) Final diphthongs

| /aata | ai/  |     | WSP | NonFinality | NonInitiality | *CLASH |
|-------|------|-----|-----|-------------|---------------|--------|
| a.    | 🖙 àa | tái |     | *           | *             | *      |
| b.    | áa   | tai | *!  |             | *             |        |
| c.    | aa   | tái | *!  | *           |               |        |

## 1.3 Final shortening

- Long vowels are not allowed at the end of a (prosodic) word,
- Unless that word is monosyllabic.
- There are no light monosyllabic words.
- We can derive this from:
- (23) Culminativity, NonFinality( $\mu$ )  $\gg$  \*V:#  $\gg$  Ident[+long]-IO/Max- $\mu$ -IO
- I'm going to use asymmetric Ident constraints for length, i.e. IDENT[+long]-IO and IDENT[-long]-IO, rather than symmetric IDENT[long]-IO because we're going to need a difference between lengthening processes and shortening processes.

(24) Final shortening

| /saı | mpaa/   | CULM | NonFinality( $\mu$ ) | *V:# | NonInit | IDENT[+long]-IO |
|------|---------|------|----------------------|------|---------|-----------------|
| a.   | sampáa  |      | <br>                 | *!   |         | I               |
| b.   | sámpaa  |      | <br>                 | *!   | *       |                 |
| c.   | sampaa  | *!   | l<br>I               | *    |         | I<br>I          |
| d.   | sampá   |      | *!                   |      |         | *               |
| e.   | ™ sámpa |      | <br>                 |      | *       | *               |
| f.   | sampa   | *!   |                      |      |         | *               |

(25) Length retained (/required) in monosyllables

| /soo/ |     | CULM | NonFinality( $\mu$ ) | *V:# | NonInit | IDENT[+long]-IO |
|-------|-----|------|----------------------|------|---------|-----------------|
| a. 🖙  | sóo |      |                      | *    | *       |                 |
| b.    | só  |      | *!                   |      | *       | *               |
| c.    | soo | *!   |                      | *    |         |                 |
| d.    | so  | *!   |                      |      |         | *               |

- There are no monomoraic words in the language. NonFinality( $\mu$ ) can guarantee this.
  - · If NonFinality( $\mu$ ) (and Culminativity) dominates IDENT[**-long**]-IO, DEP-IO, and/or MPARSE ('Assign a violation for the null parse'), then any monomoraic candidate will be suboptimal.
- The sources I've seen don't report any alternations in nouns that allow us to see how subminimal noun/adjective roots would be treated.

## 1.4 Ranking summary

## (26) Hasse diagram



## 1.5 What you can't fix with augmentation

- We see a number of violations of relatively high ranked constraints, which could be alleviated by syllable (*ta*) epenthesis, but aren't.
- Final long vowels in monosyllables

## (27) DEP-IO $\gg *V:#$

| /soo/ |               | NonFinality( $\mu$ ) | DEP-IO           | *V:# | NonInit |
|-------|---------------|----------------------|------------------|------|---------|
| a. 🖙  | sóo           |                      | <del> </del><br> | *    | *       |
| b.    | sóo <i>ta</i> |                      | *!*              |      | *       |

• Stressed initial syllables (follows from transitivity)

#### (28) Dep-IO $\gg$ NonInitiality

| /mati/ |                | NonFinality( $\mu$ ) | DEP-IO | NonInit |
|--------|----------------|----------------------|--------|---------|
| a. 🖙   | máti           |                      | l      | *       |
| b.     | matí <i>ta</i> |                      | *!*    |         |

• Final lapses (also follows from transitivity )

#### (29) DEP-IO $\gg$ \*LAPSE

| /maawoni/ |                   | NonFinality( $\mu$ ) | DEP-IO | NonInit | *LAPSE |
|-----------|-------------------|----------------------|--------|---------|--------|
| a.        | r máawoni         |                      | I      | *       | *      |
| b.        | máawonì <i>ta</i> |                      | *!*    | *       |        |

## 2 My (attempt at an) analysis

- There's at least two things I don't like about M&P's analysis
  - 1. Their reliance on prosodic words and feet for which there's no independent evidence
  - 2. Their DISYLLABLE constraint for the reduplicant.
- I think I can mostly re-work the prosodic word/feet stuff using the above stress analysis + Base-Derivative faithfulness.
- I have no way around DISYLLABLE yet.

#### 2.1 Augmentation and BD-faithfulness

- M&P's insight is that the augmented forms act like they have properties of prosodic words.
  - · Namely, they require bimoraicity.
- We saw that you can derive this from NonFinality( $\mu$ ) in freestanding words.
- Problem: verbal roots are inherently bound
  - · There are no forms where the verbal root appears without suffixes,
  - · and each suffix consists of at least one vowel.
  - · So there are no freestanding forms where the verbal root could be augmented to satisfy NonFinality( $\mu$ ).
- Wonky solution: Claim that the grammar has access to such a form, and use it as base for Base-Derivative faithfulness.
  - · I'll call this the morphological base [MBase], to distinguish it from the base of reduplication [RBase].
  - · **Note:** the derivative will not be faithful to stress properties, even though we're using stress considerations to motivate augmentation.
- We derive augmentation to minimality in the same way as we did within M&P's analysis, except using NONFINALITY(μ) rather than SUFFIX-TO-PROSODICWORD.

## (30) Augmentation of /CV/ to MBase [CVta]

| /na/ |              | NonFinality( $\mu$ ) | IDENT[-long]-IO | DEP-IO |
|------|--------------|----------------------|-----------------|--------|
| a.   | ná           | *!                   |                 |        |
| b.   | náa          |                      | *!              |        |
| c. B | ná <i>ta</i> |                      |                 | **     |

## (31) Augmentation of /C/ to MBase [Caa]

| /n/ |    |      | NonFinality( $\mu$ ) | IDENT[-long]-IO | DEP-IO | DEP-LONGV-IO |
|-----|----|------|----------------------|-----------------|--------|--------------|
| a.  |    | pá   | *!                   |                 | *      |              |
| b.  | rg | páa  |                      |                 | *      | *            |
| c.  |    | páta |                      |                 | **!*   |              |

• I assume that this is the same way that subminimal noun/adjective roots would be treated; but there's no evidence as far as I know.

## (32) Hasse diagram



- These MBases serve as the B in a BD correspondence relation with the forms that undergo suffixation.
- Augmentation happens when phonotactics call for / allow epenthesis.
  - · CVta are protected by MAX-C-BD
  - · Caa are protected by IDENT[+long]-BD

(33) Augmentation of /CV/ before C-initial suffix

| INP           | PUT: /na, -piro-/   |          |                 |                 |        |
|---------------|---------------------|----------|-----------------|-----------------|--------|
| MBASE: [nata] |                     | MAX-C-BD | IDENT[+long]-BD | IDENT[-long]-IO | DEP-IO |
| a.            | na-piro-            | *!       | l               |                 |        |
| b.            | naa-piro-           | *!       |                 | *               |        |
| c.            | na <i>ta</i> -piro- |          |                 |                 | **     |

(34) Augmentation of /C/ before C-initial suffix

| INPUT: /p, -piro-/ |          | IDENT-     | IDENT-     |        |          |
|--------------------|----------|------------|------------|--------|----------|
| MBASE: [paa]       | MAX-C-BD | [+long]-BD | [-long]-IO | DEP-IO | DEPV:-IO |
| a. pa-piro-        |          | *!         |            | *      |          |
| b. 🖙 paa-piro-     |          |            |            | *      | *        |
| c. pata-piro-      |          | *!         |            | ***    |          |

• This predicts no augmentation before V-initial suffixes

(35) No "augmentation" (just *t*-epenthesis) for /CV/ before V-initial suffix

| INPUT: /na, -aanchi-/ |                                    |       |          | IDENT-     | IDENT-     |        |
|-----------------------|------------------------------------|-------|----------|------------|------------|--------|
| MBASE: [nata]         |                                    | ONSET | MAX-C-BD | [+long]-BD | [-long]-IO | DEP-IO |
| a.                    | na.aanc <sup>h</sup> i-            | *!    | *        | <br> <br>  |            |        |
| b.                    | naa.aanc <sup>h</sup> i-           | *!    | *        | l          | *          |        |
| c.                    | na <i>ta</i> .aanc <sup>h</sup> i- | *!    |          | <br>       |            | **     |
| d.                    | rataanc <sup>h</sup> i-            |       |          | <br>       |            | *      |
| e.                    | naa <i>t</i> aanc <sup>h</sup> i-  |       |          | <br>       | *!         | *      |
| f.                    | na <i>tat</i> aanc <sup>h</sup> i- |       |          |            |            | ***!   |

- The independent need for consonant epenthesis satisfies MAX-C-BD.
- Nothing motivates additional epenthesis; MAX-V-BD must be ranked below DEP-IO.

(36) No epenthesis) for /C/ before V-initial suffix

| INPUT: /p, -aanchi-/ |                                     |       |          | IDENT-     | IDENT-     |        |
|----------------------|-------------------------------------|-------|----------|------------|------------|--------|
| MBASE: [paa]         |                                     | ONSET | Max-C-BD | [+long]-BD | [-long]-IO | DEP-IO |
| a.                   | pa.aanc <sup>h</sup> i-             | *!    |          | ·<br>·     |            | *      |
| b.                   | paa.aanc <sup>h</sup> i-            | *!    |          | <br> <br>  |            | *      |
| c.                   | p <i>ata</i> .aanc <sup>h</sup> i-  | *!    |          | *          |            | ***    |
| d.                   | p <i>at</i> aanc <sup>h</sup> i-    |       |          | *!         |            | **     |
| e.                   | p <i>aat</i> -aanc <sup>h</sup> i-  |       |          | l<br>I     |            | *!*    |
| f.                   | p <i>atat</i> -aanc <sup>h</sup> i- |       |          | *!         |            | ****   |
| g.                   | r p-aanc <sup>h</sup> i-            |       |          | <br>       | ·          |        |

- (g) escapes IDENT[+long]-BD violation by not having a vowel in correspondence with the MBase.
- Local Summary: Effect of SUFFIX-TO-PWD recreated through Base-Derivative faithfulness.
  - · Pro: Doesn't rely on otherwise unmotivated and non–surface-true prosodic structure.
  - · Con: Requires positing as base a non-occurring form; stipulates faithfulness to the specific properties created by augmentation.

#### (37) Hasse diagram



• Next time: analysis of reduplication

## References

Liberman, Mark & Alan Prince. 1977. On Stress and Linguistic Rhythm. *Linguistic Inquiry* 8(2):249–336. McCarthy, John J. & Alan Prince. 1993. Prosodic Morphology I: Constraint Interaction and Satisfaction. *Linguistics Department Faculty Publication Series* 14 (2001 version). http://scholarworks.umass.edu/linguist\_faculty\_pubs/14.

Payne, David L., Judith K. Payne & Jorge Santos. 1982. *Morfología, fonología y fonética del asheninca del apurucayali (campa-arawak preandino)* (Serie Lingüística Peruana 18). 1st edn. Yarinacocha: Inst. Lingüístico de Verano.

Spring, Cari Louise. 1990. Implications of Axininca Campa for Prosodic Morphology and Reduplication. University of Arizona, PhD Dissertation.