Class 20 Syllabic Consonants

3/30/2022

1 Review: Markedness and Faithfulness

• Last time, I introduced terms for the two main types of constraints in OT: Markedness and Faithfulness.

1.1 Faithfulness constraints

 \star Faithfulness constraints penalize **changes** between the input and the output.

- In other words, they are what is violated by applying a phonological process.
- $\circ\,$ They work by *comparing* the input to the output, and assigning a violation if the two are different in the relevant way.
- The inclusion of faithfulness constraints in the theory mirrors the fact that in rule-based theories, the only aspects of the input that change are the ones called for by the rules of the language.
- Deletion, epenthesis, and feature change are the three main types of processes. There is a separate faithfulness constraint for each one:
- (1) a. **MAX:** Don't delete.
 - b. **DEP:** Don't epenthesize.
 - c. **IDENT**[**F**]: Don't change the value of feature F.
- Let's say that a language doesn't allow voiced obstruents at the ends of words (like German). Each of these processes could fix the problem:

		, O 1			
	$/\mathrm{bet}/$	NoFinalVoicedObs	Max	Dep	Ident[voice]
a.	[tag]	* ([g] in coda)			l
b.	[ta]		* $(/g/ \rightarrow \emptyset)$		
c.	[ta.gə]		1	$\stackrel{ }{} (\emptyset \to [a])$	1
d.	[tak]				* $(/g/ \rightarrow [t])$

(2) How to fix an underlying stop in would-be coda position

- The process that the language chooses to apply will be the one whose corresponding faithfulness constraint ranks the lowest in that language.
- If the markedness constraint NOFINALVOICEDOBS ranks below all the faithfulness constraints, then no process will apply; this will be a language that tolerates stop codas.
- We can identify a faithfulness violation by looking at what changes in the corresponding rule:
- (3) **German:** $/-\text{son}, +\text{voice}/ \rightarrow \lfloor [-\text{voice}] \rfloor / _\#$
- \rightarrow This *devoicing* process violates IDENT[voice], because it changes the feature [\pm voice].

1.2 Markedness constraints

- \star Markedness constraints penalize particular structures, configurations, sequences, etc. in the output.
 - Markedness constraints *trigger* the application of a process.
 - These constraints only look at the candidate outputs; they don't care about what was in the input.
- \bullet In the German example, NOFINALVOICEDOBS is the relevant markedness constraint.
 - $\circ\,$ It penalizes outputs where a voiced obstruent is in word-final position.
- We can identify markedness constraints from the corresponding rules, if we change the format of rules.
 - $\rightarrow\,$ Consider what happens when we form at the rule to capture the entire underlying sequence and the entire surface sequence:
- (4) Traditional rule format (5) Alternative rule format
 - $/-\text{son}, +\text{voice}/ \rightarrow [-\text{voice}] / _#$

 $\underbrace{[-\text{son, +voice}]\#}_{\text{Structural Description}} \rightarrow [-\text{son, -voice}]\#$

- Markedness constraints (generally) correspond to the "structural descriptions" of rules.
 - $\circ\,$ Markedness constraints reflect problems with a particular sequence of sounds that the grammar wants to fix.
 - $\circ\,$ In rules, the structural description is what the grammar wants to change.
- * Processes are triggered by having a markedness constraint outrank a faithfulness constraint.
- * Syllable structure constraints are a unique type of markedness constraint:
 - Syllable structure is absent in the input, so syllabification in the output doesn't seem like a process (it's not changing something that already existed), but it is.

2 OT and the typology of syllabic consonants

- So far, we've seen that syllables are usually built around a vowel. However, this is not always the case.
- Recall these facts from English, where sonorant consonants function as syllabic consonants:
 Syllabic consonant represented as [C] (e.g. "syllabic n" = [n]).
- (6) Syllabic consonants

- Most languages that do allow syllabic consonants place serious restrictions on what consonants can be syllabic and under what circumstances. The most common restriction is one based on **sonority**.
- (7) General sonority scale

	lower . ←	sonority	higher	sonority			
	1	2	3	4	5	6	7
•	Stop	Affricate	Fricative	Nasal	Liquid	Glide	Vowel

• By and large, the more sonorous the consonant, the better it is as a syllabic consonant.

 \Rightarrow This gives us the typology of permissible syllabic consonants (i.e. nuclei) within a language in (8).

* **Typology:** the distribution of patterns across languages.

(8) Typology of permissible syllable nuclei (gray cells = impermissible; white cells = permissible)

	Pote	ntial nuc	leus		
Stop	Fricative	Nasal	Liquid	Vowel	
pt	$\mathbf{p}\mathbf{s}$	pņ	pŗ	pa	Spanish, French, etc.
pţ	ps	pn	pŗ	pa	Bulgarian, Czech, Sanskrit, etc.
pţ	$\mathbf{p}\mathbf{s}$	$\mathrm{p}\mathrm{p}$	pŗ	pa	English, Gothic, etc.
pţ	$\mathbf{p}\mathbf{s}$	pņ	pŗ	\mathbf{pa}	Yavapai
pţ	$\mathbf{p}\mathbf{s}$	pņ	pŗ	\mathbf{pa}	Tashlhiyt Berber

* I leave out glides because glides are usually just [-syllabic] instances of high vowels.

- * Many languages allow (at least some) sonorant consonants to be syllable nuclei, but only one allows stops to be syllable nuclei: *Tashlhiyt Berber*.
- We can reframe the generalization about which kinds of sounds a language will allow to function as a syllable nucleus as an **implicational universal**:

(9) Implicational Universal about Possible Nuclei If a language allows a consonant to function as a syllable nucleus, it will also allow any sound which is *more sonorous* to function as a syllable nucleus.

- One way to formalize this universal in OT is to define a set of constraints against particular sounds functioning as nuclei and institute a *fixed ranking* according to their sonority level (lowest sonority on the top, highest sonority on the bottom).¹
- (10) a. ***Nuc(T):** Don't have a syllabic **stop**.
 - b. ***Nuc(F):** Don't have a syllabic **fricative**.
 - c. *Nuc(N): Don't have a syllabic nasal.
 - d. ***Nuc(L):** Don't have a syllabic liquid.
 - e. ***Nuc(G):** Don't have a syllabic **glide**.
 - f. ***Nuc(V)**: Don't have a syllabic **vowel**.

(11) **Fixed ranking:**

 $*Nuc(T) \gg *Nuc(F) \gg *Nuc(N) \gg *Nuc(L) \gg *Nuc(G) \gg *Nuc(V)$

- This fixed ranking needs to interact with a constraint that will prefer syllabifying consonants as nuclei under certain conditions. For now, we'll use DEP:
- (12) **DEP** ($\sim don't \ epenthesize$): Don't insert a vowel.
- When your input has a long string of consonants, in order to get a syllable nucleus, you can either insert a vowel (and violate DEP) or turn one of the consonants into a syllabic consonant (violating one of the *Nuc constraints).

 \rightarrow Which option you choose will depend on where DEP fits into the fixed ranking in (11).

• The relative ranking of DEP can freely vary by language.

 \rightarrow This is what generates the typology in (8).

- In a language like Spanish, which doesn't allow any syllabic consonants, DEP ranks *below all* of the *NUC constraints.
 - \rightarrow It is worse to make any consonant syllabic than to insert a vowel.

(13) Spanish-type language (no syllabic consonants)

i. Liquids

	/prka/	NUC(T)	NUC(F)	*NUC(N)	*Nuc(L)	Dep
a.	pŗ.ka				*!	
b. 🖙	par.ka					*

ii. <u>Nasals</u>

	/pnka/	*NUC(T)	NUC(F)	NUC(N)	*NUC(L)	Dep
a.	pņ.ka			*!		
b. 📭	🛛 pan.ka					*

- b. *Nuc(F): Don't have a syllabic nucleus whose sonority is less than or equal to that of a fricative.
- c. *Nuc(N): Don't have a syllabic nucleus whose sonority is less than or equal to that of a nasal.
 - d. *Nuc(L): Don't have a syllabic nucleus whose sonority is less than or equal to that of a liquid.
- e. *Nuc(G): Don't have a syllabic nucleus whose sonority is less than or equal to that of a glide.
 f. *Nuc(V): Don't have a syllabic nucleus whose sonority is less than or equal to that of a vowel.

¹ Another way to do this is by defining the constraints "stringently": each *Nuc penalizes all sounds which are less than or equal to some sonority value. Namely:

i) a. ***Nuc(T):** Don't have a syllabic nucleus whose sonority is less than or equal to that of a **stop**.

iii. <u>Fricatives</u>

	$/\mathrm{pska}/$	*NUC(T)	NUC(F)	NUC(N)	NUC(L)	Dep
a.	$_{\rm ps.ka}$		*!			
b. 🖙	pas.ka					*

iv. Stops

propa						
	$/\mathrm{ptka}/$	*NUC(T)	NUC(F)	NUC(N)	*NUC(L)	Dep
a.	pt.ka	*!				
b. 🛚	☞ pat.ka					*

 \bullet In a language like Sanskrit, which allows only syllabic liquids, DEP ranks between *Nuc(N) and *Nuc(L).

 \rightarrow It is worse to insert a vowel than to make a liquid syllabic, but it is worse to make any other consonant syllabic than to insert a vowel.

- (14) Sanskrit-type language (only syllabic liquids allowed)
 - i. Liquids

		/prka/	*NUC(T)	NUC(F)	*NUC(N)	Dep	*Nuc(L)
a.	ß	pŗ.ka					*
b.		par.ka				*!	

ii. <u>Nasals</u>

	/pnka/	*NUC(T)	NUC(F)	NUC(N)	Dep	*NUC(L)
a.	pņ.ka			*!		
b. 🖙	pan.ka				*	

iii. Fricatives

		$/\mathrm{pska}/$	*NUC(T)	NUC(F)	NUC(N)	Dep	NUC(L)
a.		pş.ka		*!			
b.	ß	pas.ka				*	

iv. Stops

	$/\mathrm{ptka}/$	*NUC(T)	NUC(F)	NUC(N)	Dep	*NUC(L)
a.	pţ.ka	*!				
b.	🖙 pat.ka				*	

- In a language like English, which allows only syllabic liquids and nasals (but not stops or fricatives), DEP ranks between *NUC(F) and *NUC(N).
 - \rightarrow It is worse to insert a vowel than to make a liquid or a nasal syllabic, but it is worse to make a stop or fricative syllabic than to insert a vowel.
- (15) English-type language (syllabic liquids and nasals allowed, but not stops or fricatives)i. Liquids

	/prka/	*NUC(T)	NUC(F)	Dep	NUC(N)	NUC(L)
a. 🛤	🖻 pŗ.ka					*
b.	par.ka			*!		

ii. <u>Nasals</u>

	/pnka/	*NUC(T)	NUC(F)	Dep	*Nuc(N)	NUC(L)
a. 🖙	pņ.ka				*	
b.	pan.ka			*!		

iii. Fricatives

	$/\mathrm{pska}/$	*NUC(T)	NUC(F)	Dep	NUC(N)	NUC(L)
a.	pş.ka		*!			
b. 🖙	′ pas.ka			*		

iv. Stops

	$/\mathrm{ptka}/$	*NUC(T)	NUC(F)	Dep	NUC(N)	NUC(L)
a.	pţ.ka	*!				
b. 🖙	pat.ka			*		

• Finally, in a language like Berber, which allows only any consonant to be syllabic, DEP *outranks all* the *Nuc constraints.

 \rightarrow It is worse to insert a vowel than to make any consonant syllabic.

- (16) Berber-type language (any consonant can be syllabic)
 - i. Liquids

		/prka/	Dep	NUC(T)	NUC(F)	NUC(N)	NUC(L)
a.	ß	pŗ.ka					*
b.		par.ka	*!				

ii. Nasals

		/pnka/	Dep	NUC(T)	NUC(F)	*NUC(N)	NUC(L)
a.	ß	pņ.ka				*	
b.		pan.ka	*!				

iii. Fricatives

		$/\mathrm{pska}/$	Dep	NUC(T)	NUC(F)	NUC(N)	NUC(L)
a.	ß	pş.ka			*		
b.		pas.ka	*!				

iv. Stops

		$/\mathrm{ptka}/$	Dep	NUC(T)	NUC(F)	NUC(N)	*NUC(L)
a.	ß	pţ.ka		*			
b.		pat.ka	*!				

* By implementing the fixed ranking of *NUC constraints according to their level of sonority, we ensure that the implicational universal in (9) will always be true.

3 Tashlhiyt Berber

- In the typology of syllabic consonants, the Tashlhiyt dialect of Berber is a unique outlier: it is the only(?) language that we know of which allows *syllabic stops*.
 - \circ But exactly this sort of language is predicted to exist by the universal in (9) and our analysis using *Nuc constraints.

• I'll first show you some of the crazy data from Tashlhiyt Berber, and then show you how we can extend our analysis to capture everything.²

3.1 Data

- Tashlhiyt Berber has only a single phonemic vowel: /a/.
- It has two other surface vowels [i,u], but these are always the result of underlying j,w/ surfacing in a position where they need to be syllabic (i.e. |j| = [i], |w| = [u]).
- It has a normal inventory of sonorants /j,w,l,r,m,n/ and lots of stops and fricatives (voiced and voiceless).
- We can observe syllabicity alternations in related forms of verbs:

Syllabic C	Masc. $/j$ -/	Fem. /t-/	
/l/	il.di	tļ.di	ʻpull'
/r/	ir.ba	tŗ.ba	'carry on one's back'
/n/	in.da	tņ.da	'shake (milk)'
$/\mathrm{m}/$	$\operatorname{im.da}$	tm.da	'be worn out'
/z/	iz.di	tz.di	'put together'
/3/	iz.la	$_{ m t}$ 3.la	'get lost'
\R\	is za	tŗ.za	ʻdig'
$/\mathrm{h}/$	ifi.da	tĥ.da	'give (gift)'
/s/	is.ti	tș.ti	'select'
/f/	if.si	tf.si	'untie'
/χ/	ix.si	tχ.si	'go out (fire)'
/ħ/	iħ.ba	tħ.ba	'cover'

(17) 3rd singular perfective forms (Dell & Elmedlaoui 1985:106, ex. 3)

• You can see similar alternations in the second syllable of these other related verb forms:

(18)	Other	verb forms	(Dell &	z Elmedlaoui	1985:106,	ex. 4)
------	-------	------------	---------	--------------	-----------	--------

/tt/	/ta-s/	
$\mathrm{trg}\mathrm{lt}$	tŗglas	'lock'
tşkŗt	tşkras	'do'
txzņt	txznas	'store'
tzdmt	tzdmas	'gather wood'
trkst	tŗksas	'hide'
tņ∫ļt	tņ∫fas	'graze'
tmsxt	tmsxas	`transform'
tļbzt	tļbzas	'step into'

² For data and analyses, consult: Dell & Elmedlaoui (1985, 1988), Prince & Smolensky ([1993] 2004), Ridouane (2008, 2014), among others.

- Some additional data where some of the generalizations seem to break down (but we can deal with it):
- (19) Some additional data points (Dell & Elmedlaoui 1985:108–111)

a.	/sawl-x/	\rightarrow	[sa.wlx]	'I spoke'
b.	/t-jwn-t-a-s/	\rightarrow	[ti.wn.tas]	'you climbed on him'
c.	/ra-j-mmʁj/	\rightarrow	[ra.jmm.ʁi]	'he will grow'
d.	/ra-j-rz/	\rightarrow	[ra.jrz]	'it will be broken'
e.	$/\hbar awl-tn/$	\rightarrow	[ħa.wļ.tņ]	'make them (m.) plentiful'
f.	/t-jzrwal-in/	\rightarrow	[ti.zr.wa.lin]	'those (f.) from Tazrwalt'

• And the *piece de resistance* — syllabic stops:

- (20) Forms with syllabic stops (Dell & Elmedlaoui 1988:1)
 - a. Voiced stop: [**bd**.dl] 'exchange!'
 - b. Voiceless stop: [tf.tk.tst:] 'you sprained it (f.)'

3.2 Analysis

- First, let's think about it descriptively.
- The syllabification procedure basically works like:
- (21) **Step 1:** Find any /a/'s. Have them project a syllable nucleus. Associate the preceding consonant to that syllable as an onset.

Step 2: Find any glides (/j,w/) that have not yet been syllabified. Have them project a syllable nucleus. Associate the preceding consonant to that syllable as an onset.
Step n: ...and so on until everything's been syllabified.

• Using some of the more basic examples from (17), we can visualize it like the following:

		INPUT	Pass 1	Pass 2
(22)	/t-fila/ \rightarrow [tfi.la]	t fi l a	$\begin{array}{c} \sigma \\ \uparrow \\ O \\ \vdots \\ t \\ f \\ l \\ a \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(23)	/j-fila/ \rightarrow [ifi.la]	INPUT i fi l a	Pass 1 σ \uparrow O N \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	Pass 2 σ σ \uparrow \uparrow \uparrow \uparrow \downarrow

 \star Since the language allows any consonant to be syllabic, why bother with onsets and codas?

- The language doesn't like to have adjacent syllabic nuclei (= hiatus).
- (24) ***V.V:** Don't have adjacent syllabic nuclei.

(25) $/j-fila/ \rightarrow [ifi.la]$ (N.B.: i = j)

		/j-fila/	*V.V	*NUC(T)	NUC(F)	NUC(N)	NUC(L)	NUC(G)	NUC(V)
a.	ß	ifi.la						*	*
b.		jń.la			*!				*
с.		i.ĥ.ļ.a	*i**		*		*	*	*

(26) $/t-fila/ \rightarrow [tfi.la]$

		/t-fila/	*V.V	NUC(T)	*NUC(F)	NUC(N)	NUC(L)	$\mathrm{Nuc}(G)$	NUC(V)
a.		țfi.la		*!					*
b.	ß	tń.la			*				*
с.		ţ.ĥ.ļ.a	*!**	*	*		*		*

• *V.V also explains why we get lower sonority syllabic consonants in (19) than we might expect:

(27)	/sawl-x/	\rightarrow [sa.wlx]	$(\mathrm{N.B.:}~\mathrm{u}=\mathrm{w})$	
------	----------	------------------------	--	--

	/sawl-x/	*V.V	*NUC(T)	NUC(F)	NUC(N)	NUC(L)	$\mathrm{Nuc}(G)$	NUC(V)
a.	sa.ulx	*!					*	*
b. 🖙	sa.wlx					*		*
c.	saw.lx			*!				*

- Under the right circumstances, we can even get syllabic stops basically, only when you have three in a row, or two at a word edge.
- We'll need some additional syllable structure constraints to get everything to work just right:
- (28) a. ***COMPLEX:** Don't have onsets or codas with more than one consonant.
 - b. **ONSET:** Don't have syllables with no onsets.
 - c. NOCODA: Don't have syllables with codas.

/>	/ / F	
(29)	$/bddl/ \rightarrow [bd.dl]$	

		/bddl/	*Complex	*NUC(T)	*NUC(L)	Onset	NoCoda
a.	ß	bd.dl		*	*		
b.		þd.dļ		*	*	*i	*!
с.		þ.ddl		**!		*	*
d.		bddļ	*!		*		1

References

Dell, François & Mohamed Elmedlaoui. 1985. Syllabic Consonants and Syllabification in Imdlawn Tashlhiyt Berber. Journal of African Languages and Linguistics 7(2):105-130.

——. 1988. Syllabic Consonants in Berber: Some New Evidence. Journal of African Languages and Linguistics 10(1):1-17. Prince, Alan & Paul Smolensky. 1993. Optimality Theory: Constraint Interaction in Generative Grammar. Technical Report TR-2 Cognitive Science Center Rutgers University.

——. [1993] 2004. Optimality Theory: Constraint Interaction in Generative Grammar. Malden, MA: Blackwell Publishing. Ridouane, Rachid. 2008. Syllables without vowels: Phonetic and Phonological Evidence from Tashlhiyt Berber. Phonology 25(2):321-359.

------. 2014. Tashlhiyt Berber. Journal of the International Phonetic Association 44(2):207-221.