PRINCETON UNIVERSITY

Linguistics

1. INTRODUCTION

- Ponapean (Austronesian; Rehg & Sohl 1981) exhibits a partial reduplication pattern which predictably alternates in length between one and two moras.
- stress and phonotactics. This analysis requires that reduplicant shape be calculated with *direct access* to:
 - (i) the surface properties of the base, and
 - (ii) the reduplicant's position relative to the base
- plicant shape is calculated without access to the base (at least in the general case).

2. DATA

- two moras in length (Rehg & Sohl 1981:§3.3.4, also §2.9.5).
 - tion of the base. I have to skip over these issues here for reasons of space and time.
- the properties that determine reduplicant length (in moras).
- to determine reduplicant length. (Data adapted from Kennedy 2002:225; see Rehg & Sohl 1981.)
- Bases with even # of moras & initial *heavy* syllables $\rightarrow 1\mu$ reduplicants (1)dù-duúp, tò-toò.roór, sò-soù.pi.sék, wà-waàn.tùu.ké
- Bases with odd # of moras (\therefore initial stress) $\rightarrow 2\mu$ reduplicants (2)pàa-pá, tè.pi-tép, <u>dòn</u>-dód, <u>lìi</u>-lì.aán, |<u>dùu</u>-dùu.pék|
- Bases with even # of moras & initial *light* syllables $\rightarrow 2\mu$ reduplicants (3)dun-du.né, din-di.líp, si.pì-si.péd, riì-ri.àa.lá

3. ANALYSIS

• This distribution can be explained by the interaction of four factors:

- A preference for shorter (i.e. monomoraic) reduplicants (4)
 - A requirement that the reduplicant bear stress
 - A ban on moraic clash
 - A ban on adjacent identical light syllables
- When (4b–d) can all be satisfied, the default preference for a monomoraic reduplicant is actualized:

Bases with even number of moras & initial heavy syllables $\rightarrow 1\mu$ reduplicants (1) by default (5) \parallel STRESS-TO-RED *CLASH_µ *REPEAT(light) \parallel /RFD duun/ ALIGN-ROOT-L_{μ}

a. du-duúp [0-01]	*1
	•
b. ☞ <u>dù</u> -duúp [<u>2</u> -01]	I
c. \underline{duu} - $duup$ [$\underline{02}$ -01]	

Reduplicant Shape Alternations in Ponapean: A Problem for Morphological Doubling Theory?

Sam Zukoff (szukoff@princeton.edu), Princeton University Program in Linguistics NELS 50 • Massachusetts Institute of Technology • Oct 25–27, 2019

• This poster refines Kennedy's (2002) BRCT analysis, deriving these alternations through the interaction of

• Ponapean may thus pose a problem for Morphological Doubling Theory (Inkelas & Zoll 2005), where redu-

• The Ponapean durative is marked by prefixal partial reduplication, which alternates between one mora and

* Among bimoraic reduplicants, there are various segmental shapes, determined by segmental composi-

• Kennedy (2002), building on McCarthy & Prince (1986), shows that stress and syllable weight are among

• In (1)–(3), I show that stress and the weight of the initial syllable are the only properties we need in order

Per Rehg (1993): Primary stress on rightmost mora (final C's are non-moraic); $R \rightarrow L$ alternating secondary stress by mora.

 $[ALIGN-ROOT-L_{\mu} \gg MAX-BR]$ [STRESS-TO-RED] $[*CLASH_{\mu}]$ [*REPEAT(light)]

*

**!

4. ANALYSIS (CONT.)

• Bases with *odd* number of moras (2) don't allow preferred 1μ red. because they stress their initial mora: • An unstressed 1 μ red. violates STRESS-TO-RED (6a); a stressed 1 μ red. violates *CLASH_{μ} (6b) \Rightarrow The reduplicant is extended to **two moras** (6c) to alleviate the problem.

Bases with odd number of moras $\rightarrow 2\mu$ reduplicants (2) due to STRESS-TO-RE					
/RED, duupek/		STRESS-TO-RED	$*CLASH_{\mu}$	ALIGN-ROOT- L_{μ}	
a.	<u>du</u> -dùupék	[0-201]	*!		*
b.	<u>dù</u> -dùupék	[<u>2</u> -201]		*!	*
C. 🕰	<u>dùu</u> -dùupék	[<u>20</u> -201]			**

/RED, duupek/	STRESS-TO-RED	*CLASH $_{\mu}$	ALIGN-ROOT- L_{μ}
a. \underline{du} -dùupék [$\underline{0}$ -201]	*!		*
b. \underline{du} -duupék [2-201]		*!	*
c. ☞ <u>dùu</u> -dùupék [<u>20</u> -201]			**

• Bases with initial .CV. syllables (3) don't allow the preferred 1μ red. because of *REPEAT(light): \rightarrow a phonotactic constraint against adjacent identical light syllables (cf. Yip 1995, Hicks Kennard 2004) \Rightarrow The reduplicant is extended to **two moras** (7c) to alleviate the problem.

Bases with even number of moras & initial *light* syll $\rightarrow 2\mu$ reduplicants (3) due to *REPEAT(light) STRESS-TO-RED /RED, riaala/ *Rep [<u>0</u>-0201] <u>ri</u>-ri.àa.lá *! [2-0201] rì-ri.àa.lá D. c. 🖙 <u>riì</u>-ri.àa.lá [†] [02-0201]

5. THEORETICAL RAMIFICATIONS

• This analysis may pose a problem for Morphological Doubling Theory (MDT; Inkelas & Zoll 2005).

Reduplication in MDT (8)

> MOTHER NODE Reduplicated Word Cophonology

DAUGHTER 1 (D1) "Reduplicant" Cophonology

DAUGHTER 2 (D2) "Base" Cophonology

• But truncation in D1 won't work for Ponapean, because D1 cannot see D2 and the structural description of *CLASH_{μ} and *REPEAT(light) is not met in D1; they are only met in the Mother Node.

 \rightarrow Therefore, the choice of truncating to one vs. two moras must be made *in the Mother Node*.

• Truncation can be effectuated in the Mother Node by ascribing the "BRCT" analysis's constraint ranking to the Reduplicated Word Cophonology.

• This means that the Reduplicated Word Cophonology must derive the full range of bimoraic shape alternations in a way that is consistent with the rest of the phonology of that node.

• BRCT has more freedom, since it governs those shape alternations through BR-faithfulness constraints.

• **Crucial question (still TBD):** can MDT fully explain the bimoraic reduplicant shape alternations? \rightarrow Follow-up question: how well can BRCT account for that set of alternations?

ED and *CLASH

PEAT(light)	ALIGN-ROOT- L_{μ}
*!	*
*!	*
	**

Typically, partial red. is the result of truncation applied in the "Reduplicant" Cophonology.

